# Copyright (c) OpenMMLab. All rights reserved.
import math

import cv2
import mmcv
import numpy as np
import torchvision.transforms as transforms
from mmdet.core import BitmapMasks, PolygonMasks
from mmdet.datasets.builder import PIPELINES
from mmdet.datasets.pipelines.transforms import Resize
from PIL import Image
from shapely.geometry import Polygon as plg

import mmocr.core.evaluation.utils as eval_utils
from mmocr.utils import check_argument


@PIPELINES.register_module()
class RandomCropInstances:
    """Randomly crop images and make sure to contain text instances.

    Args:
        target_size (tuple or int): (height, width)
        positive_sample_ratio (float): The probability of sampling regions
            that go through positive regions.
    """

    def __init__(
            self,
            target_size,
            instance_key,
            mask_type='inx0',  # 'inx0' or 'union_all'
            positive_sample_ratio=5.0 / 8.0):

        assert mask_type in ['inx0', 'union_all']

        self.mask_type = mask_type
        self.instance_key = instance_key
        self.positive_sample_ratio = positive_sample_ratio
        self.target_size = target_size if (target_size is None or isinstance(
            target_size, tuple)) else (target_size, target_size)

    def sample_offset(self, img_gt, img_size):
        h, w = img_size
        t_h, t_w = self.target_size

        # target size is bigger than origin size
        t_h = t_h if t_h < h else h
        t_w = t_w if t_w < w else w
        if (img_gt is not None
                and np.random.random_sample() < self.positive_sample_ratio
                and np.max(img_gt) > 0):

            # make sure to crop the positive region

            # the minimum top left to crop positive region (h,w)
            tl = np.min(np.where(img_gt > 0), axis=1) - (t_h, t_w)
            tl[tl < 0] = 0
            # the maximum top left to crop positive region
            br = np.max(np.where(img_gt > 0), axis=1) - (t_h, t_w)
            br[br < 0] = 0
            # if br is too big so that crop the outside region of img
            br[0] = min(br[0], h - t_h)
            br[1] = min(br[1], w - t_w)
            #
            h = np.random.randint(tl[0], br[0]) if tl[0] < br[0] else 0
            w = np.random.randint(tl[1], br[1]) if tl[1] < br[1] else 0
        else:
            # make sure not to crop outside of img

            h = np.random.randint(0, h - t_h) if h - t_h > 0 else 0
            w = np.random.randint(0, w - t_w) if w - t_w > 0 else 0

        return (h, w)

    @staticmethod
    def crop_img(img, offset, target_size):
        h, w = img.shape[:2]
        br = np.min(
            np.stack((np.array(offset) + np.array(target_size), np.array(
                (h, w)))),
            axis=0)
        return img[offset[0]:br[0], offset[1]:br[1]], np.array(
            [offset[1], offset[0], br[1], br[0]])

    def crop_bboxes(self, bboxes, canvas_bbox):
        kept_bboxes = []
        kept_inx = []
        canvas_poly = eval_utils.box2polygon(canvas_bbox)
        tl = canvas_bbox[0:2]

        for idx, bbox in enumerate(bboxes):
            poly = eval_utils.box2polygon(bbox)
            area, inters = eval_utils.poly_intersection(
                poly, canvas_poly, return_poly=True)
            if area == 0:
                continue
            xmin, ymin, xmax, ymax = inters.bounds
            kept_bboxes += [
                np.array(
                    [xmin - tl[0], ymin - tl[1], xmax - tl[0], ymax - tl[1]],
                    dtype=np.float32)
            ]
            kept_inx += [idx]

        if len(kept_inx) == 0:
            return np.array([]).astype(np.float32).reshape(0, 4), kept_inx

        return np.stack(kept_bboxes), kept_inx

    @staticmethod
    def generate_mask(gt_mask, type):

        if type == 'inx0':
            return gt_mask.masks[0]
        if type == 'union_all':
            mask = gt_mask.masks[0].copy()
            for idx in range(1, len(gt_mask.masks)):
                mask = np.logical_or(mask, gt_mask.masks[idx])
            return mask

        raise NotImplementedError

    def __call__(self, results):

        gt_mask = results[self.instance_key]
        mask = None
        if len(gt_mask.masks) > 0:
            mask = self.generate_mask(gt_mask, self.mask_type)
        results['crop_offset'] = self.sample_offset(mask,
                                                    results['img'].shape[:2])

        # crop img. bbox = [x1,y1,x2,y2]
        img, bbox = self.crop_img(results['img'], results['crop_offset'],
                                  self.target_size)
        results['img'] = img
        img_shape = img.shape
        results['img_shape'] = img_shape

        # crop masks
        for key in results.get('mask_fields', []):
            results[key] = results[key].crop(bbox)

        # for mask rcnn
        for key in results.get('bbox_fields', []):
            results[key], kept_inx = self.crop_bboxes(results[key], bbox)
            if key == 'gt_bboxes':
                # ignore gt_labels accordingly
                if 'gt_labels' in results:
                    ori_labels = results['gt_labels']
                    ori_inst_num = len(ori_labels)
                    results['gt_labels'] = [
                        ori_labels[idx] for idx in range(ori_inst_num)
                        if idx in kept_inx
                    ]
                # ignore g_masks accordingly
                if 'gt_masks' in results:
                    ori_mask = results['gt_masks'].masks
                    kept_mask = [
                        ori_mask[idx] for idx in range(ori_inst_num)
                        if idx in kept_inx
                    ]
                    target_h, target_w = bbox[3] - bbox[1], bbox[2] - bbox[0]
                    if len(kept_inx) > 0:
                        kept_mask = np.stack(kept_mask)
                    else:
                        kept_mask = np.empty((0, target_h, target_w),
                                             dtype=np.float32)
                    results['gt_masks'] = BitmapMasks(kept_mask, target_h,
                                                      target_w)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class RandomRotateTextDet:
    """Randomly rotate images."""

    def __init__(self, rotate_ratio=1.0, max_angle=10):
        self.rotate_ratio = rotate_ratio
        self.max_angle = max_angle

    @staticmethod
    def sample_angle(max_angle):
        angle = np.random.random_sample() * 2 * max_angle - max_angle
        return angle

    @staticmethod
    def rotate_img(img, angle):
        h, w = img.shape[:2]
        rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
        img_target = cv2.warpAffine(
            img, rotation_matrix, (w, h), flags=cv2.INTER_NEAREST)
        assert img_target.shape == img.shape
        return img_target

    def __call__(self, results):
        if np.random.random_sample() < self.rotate_ratio:
            # rotate imgs
            results['rotated_angle'] = self.sample_angle(self.max_angle)
            img = self.rotate_img(results['img'], results['rotated_angle'])
            results['img'] = img
            img_shape = img.shape
            results['img_shape'] = img_shape

            # rotate masks
            for key in results.get('mask_fields', []):
                masks = results[key].masks
                mask_list = []
                for m in masks:
                    rotated_m = self.rotate_img(m, results['rotated_angle'])
                    mask_list.append(rotated_m)
                results[key] = BitmapMasks(mask_list, *(img_shape[:2]))

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class ColorJitter:
    """An interface for torch color jitter so that it can be invoked in
    mmdetection pipeline."""

    def __init__(self, **kwargs):
        self.transform = transforms.ColorJitter(**kwargs)

    def __call__(self, results):
        # img is bgr
        img = results['img'][..., ::-1]
        img = Image.fromarray(img)
        img = self.transform(img)
        img = np.asarray(img)
        img = img[..., ::-1]
        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class ScaleAspectJitter(Resize):
    """Resize image and segmentation mask encoded by coordinates.

    Allowed resize types are `around_min_img_scale`, `long_short_bound`, and
    `indep_sample_in_range`.
    """

    def __init__(self,
                 img_scale=None,
                 multiscale_mode='range',
                 ratio_range=None,
                 keep_ratio=False,
                 resize_type='around_min_img_scale',
                 aspect_ratio_range=None,
                 long_size_bound=None,
                 short_size_bound=None,
                 scale_range=None):
        super().__init__(
            img_scale=img_scale,
            multiscale_mode=multiscale_mode,
            ratio_range=ratio_range,
            keep_ratio=keep_ratio)
        assert not keep_ratio
        assert resize_type in [
            'around_min_img_scale', 'long_short_bound', 'indep_sample_in_range'
        ]
        self.resize_type = resize_type

        if resize_type == 'indep_sample_in_range':
            assert ratio_range is None
            assert aspect_ratio_range is None
            assert short_size_bound is None
            assert long_size_bound is None
            assert scale_range is not None
        else:
            assert scale_range is None
            assert isinstance(ratio_range, tuple)
            assert isinstance(aspect_ratio_range, tuple)
            assert check_argument.equal_len(ratio_range, aspect_ratio_range)

            if resize_type in ['long_short_bound']:
                assert short_size_bound is not None
                assert long_size_bound is not None

        self.aspect_ratio_range = aspect_ratio_range
        self.long_size_bound = long_size_bound
        self.short_size_bound = short_size_bound
        self.scale_range = scale_range

    @staticmethod
    def sample_from_range(range):
        assert len(range) == 2
        min_value, max_value = min(range), max(range)
        value = np.random.random_sample() * (max_value - min_value) + min_value

        return value

    def _random_scale(self, results):

        if self.resize_type == 'indep_sample_in_range':
            w = self.sample_from_range(self.scale_range)
            h = self.sample_from_range(self.scale_range)
            results['scale'] = (int(w), int(h))  # (w,h)
            results['scale_idx'] = None
            return
        h, w = results['img'].shape[0:2]
        if self.resize_type == 'long_short_bound':
            scale1 = 1
            if max(h, w) > self.long_size_bound:
                scale1 = self.long_size_bound / max(h, w)
            scale2 = self.sample_from_range(self.ratio_range)
            scale = scale1 * scale2
            if min(h, w) * scale <= self.short_size_bound:
                scale = (self.short_size_bound + 10) * 1.0 / min(h, w)
        elif self.resize_type == 'around_min_img_scale':
            short_size = min(self.img_scale[0])
            ratio = self.sample_from_range(self.ratio_range)
            scale = (ratio * short_size) / min(h, w)
        else:
            raise NotImplementedError

        aspect = self.sample_from_range(self.aspect_ratio_range)
        h_scale = scale * math.sqrt(aspect)
        w_scale = scale / math.sqrt(aspect)
        results['scale'] = (int(w * w_scale), int(h * h_scale))  # (w,h)
        results['scale_idx'] = None


@PIPELINES.register_module()
class AffineJitter:
    """An interface for torchvision random affine so that it can be invoked in
    mmdet pipeline."""

    def __init__(self,
                 degrees=4,
                 translate=(0.02, 0.04),
                 scale=(0.9, 1.1),
                 shear=None,
                 resample=False,
                 fillcolor=0):
        self.transform = transforms.RandomAffine(
            degrees=degrees,
            translate=translate,
            scale=scale,
            shear=shear,
            resample=resample,
            fillcolor=fillcolor)

    def __call__(self, results):
        # img is bgr
        img = results['img'][..., ::-1]
        img = Image.fromarray(img)
        img = self.transform(img)
        img = np.asarray(img)
        img = img[..., ::-1]
        results['img'] = img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class RandomCropPolyInstances:
    """Randomly crop images and make sure to contain at least one intact
    instance."""

    def __init__(self,
                 instance_key='gt_masks',
                 crop_ratio=5.0 / 8.0,
                 min_side_ratio=0.4):
        super().__init__()
        self.instance_key = instance_key
        self.crop_ratio = crop_ratio
        self.min_side_ratio = min_side_ratio

    def sample_valid_start_end(self, valid_array, min_len, max_start, min_end):

        assert isinstance(min_len, int)
        assert len(valid_array) > min_len

        start_array = valid_array.copy()
        max_start = min(len(start_array) - min_len, max_start)
        start_array[max_start:] = 0
        start_array[0] = 1
        diff_array = np.hstack([0, start_array]) - np.hstack([start_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        start = np.random.randint(region_starts[region_ind],
                                  region_ends[region_ind])

        end_array = valid_array.copy()
        min_end = max(start + min_len, min_end)
        end_array[:min_end] = 0
        end_array[-1] = 1
        diff_array = np.hstack([0, end_array]) - np.hstack([end_array, 0])
        region_starts = np.where(diff_array < 0)[0]
        region_ends = np.where(diff_array > 0)[0]
        region_ind = np.random.randint(0, len(region_starts))
        end = np.random.randint(region_starts[region_ind],
                                region_ends[region_ind])
        return start, end

    def sample_crop_box(self, img_size, results):
        """Generate crop box and make sure not to crop the polygon instances.

        Args:
            img_size (tuple(int)): The image size (h, w).
            results (dict): The results dict.
        """

        assert isinstance(img_size, tuple)
        h, w = img_size[:2]

        key_masks = results[self.instance_key].masks
        x_valid_array = np.ones(w, dtype=np.int32)
        y_valid_array = np.ones(h, dtype=np.int32)

        selected_mask = key_masks[np.random.randint(0, len(key_masks))]
        selected_mask = selected_mask[0].reshape((-1, 2)).astype(np.int32)
        max_x_start = max(np.min(selected_mask[:, 0]) - 2, 0)
        min_x_end = min(np.max(selected_mask[:, 0]) + 3, w - 1)
        max_y_start = max(np.min(selected_mask[:, 1]) - 2, 0)
        min_y_end = min(np.max(selected_mask[:, 1]) + 3, h - 1)

        for key in results.get('mask_fields', []):
            if len(results[key].masks) == 0:
                continue
            masks = results[key].masks
            for mask in masks:
                assert len(mask) == 1
                mask = mask[0].reshape((-1, 2)).astype(np.int32)
                clip_x = np.clip(mask[:, 0], 0, w - 1)
                clip_y = np.clip(mask[:, 1], 0, h - 1)
                min_x, max_x = np.min(clip_x), np.max(clip_x)
                min_y, max_y = np.min(clip_y), np.max(clip_y)

                x_valid_array[min_x - 2:max_x + 3] = 0
                y_valid_array[min_y - 2:max_y + 3] = 0

        min_w = int(w * self.min_side_ratio)
        min_h = int(h * self.min_side_ratio)

        x1, x2 = self.sample_valid_start_end(x_valid_array, min_w, max_x_start,
                                             min_x_end)
        y1, y2 = self.sample_valid_start_end(y_valid_array, min_h, max_y_start,
                                             min_y_end)

        return np.array([x1, y1, x2, y2])

    def crop_img(self, img, bbox):
        assert img.ndim == 3
        h, w, _ = img.shape
        assert 0 <= bbox[1] < bbox[3] <= h
        assert 0 <= bbox[0] < bbox[2] <= w
        return img[bbox[1]:bbox[3], bbox[0]:bbox[2]]

    def __call__(self, results):
        if len(results[self.instance_key].masks) < 1:
            return results
        if np.random.random_sample() < self.crop_ratio:
            crop_box = self.sample_crop_box(results['img'].shape, results)
            results['crop_region'] = crop_box
            img = self.crop_img(results['img'], crop_box)
            results['img'] = img
            results['img_shape'] = img.shape

            # crop and filter masks
            x1, y1, x2, y2 = crop_box
            w = max(x2 - x1, 1)
            h = max(y2 - y1, 1)
            labels = results['gt_labels']
            valid_labels = []
            for key in results.get('mask_fields', []):
                if len(results[key].masks) == 0:
                    continue
                results[key] = results[key].crop(crop_box)
                # filter out polygons beyond crop box.
                masks = results[key].masks
                valid_masks_list = []

                for ind, mask in enumerate(masks):
                    assert len(mask) == 1
                    polygon = mask[0].reshape((-1, 2))
                    if (polygon[:, 0] >
                            -4).all() and (polygon[:, 0] < w + 4).all() and (
                                polygon[:, 1] > -4).all() and (polygon[:, 1] <
                                                               h + 4).all():
                        mask[0][::2] = np.clip(mask[0][::2], 0, w)
                        mask[0][1::2] = np.clip(mask[0][1::2], 0, h)
                        if key == self.instance_key:
                            valid_labels.append(labels[ind])
                        valid_masks_list.append(mask)

                results[key] = PolygonMasks(valid_masks_list, h, w)
            results['gt_labels'] = np.array(valid_labels)

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class RandomRotatePolyInstances:

    def __init__(self,
                 rotate_ratio=0.5,
                 max_angle=10,
                 pad_with_fixed_color=False,
                 pad_value=(0, 0, 0)):
        """Randomly rotate images and polygon masks.

        Args:
            rotate_ratio (float): The ratio of samples to operate rotation.
            max_angle (int): The maximum rotation angle.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rotated image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        self.rotate_ratio = rotate_ratio
        self.max_angle = max_angle
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def rotate(self, center, points, theta, center_shift=(0, 0)):
        # rotate points.
        (center_x, center_y) = center
        center_y = -center_y
        x, y = points[::2], points[1::2]
        y = -y

        theta = theta / 180 * math.pi
        cos = math.cos(theta)
        sin = math.sin(theta)

        x = (x - center_x)
        y = (y - center_y)

        _x = center_x + x * cos - y * sin + center_shift[0]
        _y = -(center_y + x * sin + y * cos) + center_shift[1]

        points[::2], points[1::2] = _x, _y
        return points

    def cal_canvas_size(self, ori_size, degree):
        assert isinstance(ori_size, tuple)
        angle = degree * math.pi / 180.0
        h, w = ori_size[:2]

        cos = math.cos(angle)
        sin = math.sin(angle)
        canvas_h = int(w * math.fabs(sin) + h * math.fabs(cos))
        canvas_w = int(w * math.fabs(cos) + h * math.fabs(sin))

        canvas_size = (canvas_h, canvas_w)
        return canvas_size

    def sample_angle(self, max_angle):
        angle = np.random.random_sample() * 2 * max_angle - max_angle
        return angle

    def rotate_img(self, img, angle, canvas_size):
        h, w = img.shape[:2]
        rotation_matrix = cv2.getRotationMatrix2D((w / 2, h / 2), angle, 1)
        rotation_matrix[0, 2] += int((canvas_size[1] - w) / 2)
        rotation_matrix[1, 2] += int((canvas_size[0] - h) / 2)

        if self.pad_with_fixed_color:
            target_img = cv2.warpAffine(
                img,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                flags=cv2.INTER_NEAREST,
                borderValue=self.pad_value)
        else:
            mask = np.zeros_like(img)
            (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
                              np.random.randint(0, w * 7 // 8))
            img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
            img_cut = mmcv.imresize(img_cut, (canvas_size[1], canvas_size[0]))
            mask = cv2.warpAffine(
                mask,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                borderValue=[1, 1, 1])
            target_img = cv2.warpAffine(
                img,
                rotation_matrix, (canvas_size[1], canvas_size[0]),
                borderValue=[0, 0, 0])
            target_img = target_img + img_cut * mask

        return target_img

    def __call__(self, results):
        if np.random.random_sample() < self.rotate_ratio:
            img = results['img']
            h, w = img.shape[:2]
            angle = self.sample_angle(self.max_angle)
            canvas_size = self.cal_canvas_size((h, w), angle)
            center_shift = (int(
                (canvas_size[1] - w) / 2), int((canvas_size[0] - h) / 2))

            # rotate image
            results['rotated_poly_angle'] = angle
            img = self.rotate_img(img, angle, canvas_size)
            results['img'] = img
            img_shape = img.shape
            results['img_shape'] = img_shape

            # rotate polygons
            for key in results.get('mask_fields', []):
                if len(results[key].masks) == 0:
                    continue
                masks = results[key].masks
                rotated_masks = []
                for mask in masks:
                    rotated_mask = self.rotate((w / 2, h / 2), mask[0], angle,
                                               center_shift)
                    rotated_masks.append([rotated_mask])

                results[key] = PolygonMasks(rotated_masks, *(img_shape[:2]))

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class SquareResizePad:

    def __init__(self,
                 target_size,
                 pad_ratio=0.6,
                 pad_with_fixed_color=False,
                 pad_value=(0, 0, 0)):
        """Resize or pad images to be square shape.

        Args:
            target_size (int): The target size of square shaped image.
            pad_with_fixed_color (bool): The flag for whether to pad rotated
               image with fixed value. If set to False, the rescales image will
               be padded onto cropped image.
            pad_value (tuple(int)): The color value for padding rotated image.
        """
        assert isinstance(target_size, int)
        assert isinstance(pad_ratio, float)
        assert isinstance(pad_with_fixed_color, bool)
        assert isinstance(pad_value, tuple)

        self.target_size = target_size
        self.pad_ratio = pad_ratio
        self.pad_with_fixed_color = pad_with_fixed_color
        self.pad_value = pad_value

    def resize_img(self, img, keep_ratio=True):
        h, w, _ = img.shape
        if keep_ratio:
            t_h = self.target_size if h >= w else int(h * self.target_size / w)
            t_w = self.target_size if h <= w else int(w * self.target_size / h)
        else:
            t_h = t_w = self.target_size
        img = mmcv.imresize(img, (t_w, t_h))
        return img, (t_h, t_w)

    def square_pad(self, img):
        h, w = img.shape[:2]
        if h == w:
            return img, (0, 0)
        pad_size = max(h, w)
        if self.pad_with_fixed_color:
            expand_img = np.ones((pad_size, pad_size, 3), dtype=np.uint8)
            expand_img[:] = self.pad_value
        else:
            (h_ind, w_ind) = (np.random.randint(0, h * 7 // 8),
                              np.random.randint(0, w * 7 // 8))
            img_cut = img[h_ind:(h_ind + h // 9), w_ind:(w_ind + w // 9)]
            expand_img = mmcv.imresize(img_cut, (pad_size, pad_size))
        if h > w:
            y0, x0 = 0, (h - w) // 2
        else:
            y0, x0 = (w - h) // 2, 0
        expand_img[y0:y0 + h, x0:x0 + w] = img
        offset = (x0, y0)

        return expand_img, offset

    def square_pad_mask(self, points, offset):
        x0, y0 = offset
        pad_points = points.copy()
        pad_points[::2] = pad_points[::2] + x0
        pad_points[1::2] = pad_points[1::2] + y0
        return pad_points

    def __call__(self, results):
        img = results['img']

        if np.random.random_sample() < self.pad_ratio:
            img, out_size = self.resize_img(img, keep_ratio=True)
            img, offset = self.square_pad(img)
        else:
            img, out_size = self.resize_img(img, keep_ratio=False)
            offset = (0, 0)

        results['img'] = img
        results['img_shape'] = img.shape

        for key in results.get('mask_fields', []):
            if len(results[key].masks) == 0:
                continue
            results[key] = results[key].resize(out_size)
            masks = results[key].masks
            processed_masks = []
            for mask in masks:
                square_pad_mask = self.square_pad_mask(mask[0], offset)
                processed_masks.append([square_pad_mask])

            results[key] = PolygonMasks(processed_masks, *(img.shape[:2]))

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


@PIPELINES.register_module()
class RandomScaling:

    def __init__(self, size=800, scale=(3. / 4, 5. / 2)):
        """Random scale the image while keeping aspect.

        Args:
            size (int) : Base size before scaling.
            scale (tuple(float)) : The range of scaling.
        """
        assert isinstance(size, int)
        assert isinstance(scale, float) or isinstance(scale, tuple)
        self.size = size
        self.scale = scale if isinstance(scale, tuple) \
            else (1 - scale, 1 + scale)

    def __call__(self, results):
        image = results['img']
        h, w, _ = results['img_shape']

        aspect_ratio = np.random.uniform(min(self.scale), max(self.scale))
        scales = self.size * 1.0 / max(h, w) * aspect_ratio
        scales = np.array([scales, scales])
        out_size = (int(h * scales[1]), int(w * scales[0]))
        image = mmcv.imresize(image, out_size[::-1])

        results['img'] = image
        results['img_shape'] = image.shape

        for key in results.get('mask_fields', []):
            if len(results[key].masks) == 0:
                continue
            results[key] = results[key].resize(out_size)

        return results


@PIPELINES.register_module()
class RandomCropFlip:

    def __init__(self,
                 pad_ratio=0.1,
                 crop_ratio=0.5,
                 iter_num=1,
                 min_area_ratio=0.2):
        """Random crop and flip a patch of the image.

        Args:
            crop_ratio (float): The ratio of cropping.
            iter_num (int): Number of operations.
            min_area_ratio (float): Minimal area ratio between cropped patch
                and original image.
        """
        assert isinstance(crop_ratio, float)
        assert isinstance(iter_num, int)
        assert isinstance(min_area_ratio, float)

        self.pad_ratio = pad_ratio
        self.epsilon = 1e-2
        self.crop_ratio = crop_ratio
        self.iter_num = iter_num
        self.min_area_ratio = min_area_ratio

    def __call__(self, results):
        for i in range(self.iter_num):
            results = self.random_crop_flip(results)
        return results

    def random_crop_flip(self, results):
        image = results['img']
        polygons = results['gt_masks'].masks
        ignore_polygons = results['gt_masks_ignore'].masks
        all_polygons = polygons + ignore_polygons
        if len(polygons) == 0:
            return results

        if np.random.random() >= self.crop_ratio:
            return results

        h, w, _ = results['img_shape']
        area = h * w
        pad_h = int(h * self.pad_ratio)
        pad_w = int(w * self.pad_ratio)
        h_axis, w_axis = self.generate_crop_target(image, all_polygons, pad_h,
                                                   pad_w)
        if len(h_axis) == 0 or len(w_axis) == 0:
            return results

        attempt = 0
        while attempt < 10:
            attempt += 1
            polys_keep = []
            polys_new = []
            ign_polys_keep = []
            ign_polys_new = []
            xx = np.random.choice(w_axis, size=2)
            xmin = np.min(xx) - pad_w
            xmax = np.max(xx) - pad_w
            xmin = np.clip(xmin, 0, w - 1)
            xmax = np.clip(xmax, 0, w - 1)
            yy = np.random.choice(h_axis, size=2)
            ymin = np.min(yy) - pad_h
            ymax = np.max(yy) - pad_h
            ymin = np.clip(ymin, 0, h - 1)
            ymax = np.clip(ymax, 0, h - 1)
            if (xmax - xmin) * (ymax - ymin) < area * self.min_area_ratio:
                # area too small
                continue

            pts = np.stack([[xmin, xmax, xmax, xmin],
                            [ymin, ymin, ymax, ymax]]).T.astype(np.int32)
            pp = plg(pts)
            fail_flag = False
            for polygon in polygons:
                ppi = plg(polygon[0].reshape(-1, 2))
                ppiou = eval_utils.poly_intersection(ppi, pp)
                if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
                        np.abs(ppiou) > self.epsilon:
                    fail_flag = True
                    break
                elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
                    polys_new.append(polygon)
                else:
                    polys_keep.append(polygon)

            for polygon in ignore_polygons:
                ppi = plg(polygon[0].reshape(-1, 2))
                ppiou = eval_utils.poly_intersection(ppi, pp)
                if np.abs(ppiou - float(ppi.area)) > self.epsilon and \
                        np.abs(ppiou) > self.epsilon:
                    fail_flag = True
                    break
                elif np.abs(ppiou - float(ppi.area)) < self.epsilon:
                    ign_polys_new.append(polygon)
                else:
                    ign_polys_keep.append(polygon)

            if fail_flag:
                continue
            else:
                break

        cropped = image[ymin:ymax, xmin:xmax, :]
        select_type = np.random.randint(3)
        if select_type == 0:
            img = np.ascontiguousarray(cropped[:, ::-1])
        elif select_type == 1:
            img = np.ascontiguousarray(cropped[::-1, :])
        else:
            img = np.ascontiguousarray(cropped[::-1, ::-1])
        image[ymin:ymax, xmin:xmax, :] = img
        results['img'] = image

        if len(polys_new) + len(ign_polys_new) != 0:
            height, width, _ = cropped.shape
            if select_type == 0:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    polys_new[idx] = [poly.reshape(-1, )]
                for idx, polygon in enumerate(ign_polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    ign_polys_new[idx] = [poly.reshape(-1, )]
            elif select_type == 1:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = [poly.reshape(-1, )]
                for idx, polygon in enumerate(ign_polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    ign_polys_new[idx] = [poly.reshape(-1, )]
            else:
                for idx, polygon in enumerate(polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    polys_new[idx] = [poly.reshape(-1, )]
                for idx, polygon in enumerate(ign_polys_new):
                    poly = polygon[0].reshape(-1, 2)
                    poly[:, 0] = width - poly[:, 0] + 2 * xmin
                    poly[:, 1] = height - poly[:, 1] + 2 * ymin
                    ign_polys_new[idx] = [poly.reshape(-1, )]
            polygons = polys_keep + polys_new
            ignore_polygons = ign_polys_keep + ign_polys_new
            results['gt_masks'] = PolygonMasks(polygons, *(image.shape[:2]))
            results['gt_masks_ignore'] = PolygonMasks(ignore_polygons,
                                                      *(image.shape[:2]))

        return results

    def generate_crop_target(self, image, all_polys, pad_h, pad_w):
        """Generate crop target and make sure not to crop the polygon
        instances.

        Args:
            image (ndarray): The image waited to be crop.
            all_polys (list[list[ndarray]]): All polygons including ground
                truth polygons and ground truth ignored polygons.
            pad_h (int): Padding length of height.
            pad_w (int): Padding length of width.
        Returns:
            h_axis (ndarray): Vertical cropping range.
            w_axis (ndarray): Horizontal cropping range.
        """
        h, w, _ = image.shape
        h_array = np.zeros((h + pad_h * 2), dtype=np.int32)
        w_array = np.zeros((w + pad_w * 2), dtype=np.int32)

        text_polys = []
        for polygon in all_polys:
            rect = cv2.minAreaRect(polygon[0].astype(np.int32).reshape(-1, 2))
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            text_polys.append([box[0], box[1], box[2], box[3]])

        polys = np.array(text_polys, dtype=np.int32)
        for poly in polys:
            poly = np.round(poly, decimals=0).astype(np.int32)
            minx = np.min(poly[:, 0])
            maxx = np.max(poly[:, 0])
            w_array[minx + pad_w:maxx + pad_w] = 1
            miny = np.min(poly[:, 1])
            maxy = np.max(poly[:, 1])
            h_array[miny + pad_h:maxy + pad_h] = 1

        h_axis = np.where(h_array == 0)[0]
        w_axis = np.where(w_array == 0)[0]
        return h_axis, w_axis


@PIPELINES.register_module()
class PyramidRescale:
    """Resize the image to the base shape, downsample it with gaussian pyramid,
    and rescale it back to original size.

    Adapted from https://github.com/FangShancheng/ABINet.

    Args:
        factor (int): The decay factor from base size, or the number of
            downsampling operations from the base layer.
        base_shape (tuple(int)): The shape of the base layer of the pyramid.
        randomize_factor (bool): If True, the final factor would be a random
            integer in [0, factor].

    :Required Keys:
        - | ``img`` (ndarray): The input image.

    :Affected Keys:
        :Modified:
            - | ``img`` (ndarray): The modified image.
    """

    def __init__(self, factor=4, base_shape=(128, 512), randomize_factor=True):
        assert isinstance(factor, int)
        assert isinstance(base_shape, list) or isinstance(base_shape, tuple)
        assert len(base_shape) == 2
        assert isinstance(randomize_factor, bool)
        self.factor = factor if not randomize_factor else np.random.randint(
            0, factor + 1)
        self.base_w, self.base_h = base_shape

    def __call__(self, results):
        assert 'img' in results
        if self.factor == 0:
            return results
        img = results['img']
        src_h, src_w = img.shape[:2]
        scale_img = mmcv.imresize(img, (self.base_w, self.base_h))
        for _ in range(self.factor):
            scale_img = cv2.pyrDown(scale_img)
        scale_img = mmcv.imresize(scale_img, (src_w, src_h))
        results['img'] = scale_img
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(factor={self.factor}, '
        repr_str += f'basew={self.basew}, baseh={self.baseh})'
        return repr_str