File size: 3,197 Bytes
d46cc41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from typing import Union
import os
from dotenv import load_dotenv
load_dotenv()

from langchain_qdrant import Qdrant
from langchain_openai import OpenAIEmbeddings
from langchain_core.prompts import format_document, PromptTemplate

from qdrant_client import QdrantClient
from qdrant_client.http import models as qdrant_models
from supabase import create_client, Client

supabase_client:Client = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_KEY"))

COLLECTIONS = [
    {
        "embedding_model": OpenAIEmbeddings(model="text-embedding-3-large", dimensions=1024),
        "chunk_size": 1024,
        "name": "1024-openaiLarge-1024",
    },
]

class Retriever():
    def __init__(
            self,
            collection_index:int = 0,
            use_doctrines:bool = True,
            search_type:str = "similarity",
            k:Union[int, None] = None,
            similarity_threshold:float = 0.0,
        ):

        self.collection_index = collection_index
        self.use_doctrines = use_doctrines
        self.search_type = search_type
        self.k = k
        self.similarity_threshold = similarity_threshold

    def _get_vectorstore(
            self,
        ) -> Qdrant:
            
        client = QdrantClient(
            url=os.environ.get("QDRANT_CLUSTER_URL"),
            api_key=os.environ.get("QDRANT_API_KEY"),
            prefer_grpc=True
        )

        store = Qdrant(
            client=client,
            embeddings=COLLECTIONS[self.collection_index]["embedding_model"],
            collection_name=COLLECTIONS[self.collection_index]["name"]
        )

        return store

    def _retrieve(
            self,
            query:str,
        ) -> list:

        if self.k is None:
            self.k = int(15000/COLLECTIONS[self.collection_index]["chunk_size"])

        vectorstore = self._get_vectorstore()
    
        if not self.use_doctrines:
            filter = qdrant_models.Filter(
                must=[
                    qdrant_models.FieldCondition(
                        key="metadata.type",
                        match=qdrant_models.MatchValue(value='Prassi')
                    )
                ]
            )
        else:
            filter = None

        if self.search_type == "similarity":
            docs = vectorstore.similarity_search_with_score(
                query, 
                k=self.k, 
                filter=filter,
                score_threshold=self.similarity_threshold
            )
        elif self.search_type == "mmr":
            docs = vectorstore.max_marginal_relevance_search_with_score_by_vector(
                vectorstore._embed_query(query), 
                k=self.k, 
                filter=filter,
                score_threshold=self.similarity_threshold
            )

        return docs

def _combine_documents(
    docs:list, 
    document_separator:str = "\n\n----------\n\n",
) -> str:
    DOCUMENT_PROMPT = PromptTemplate.from_template(
        template="UUID: {supabase_id}\nTITOLO: {title}\nTIPO: {type}\nCONTENUTO: {page_content}"
    )
    doc_strings = [format_document(doc, DOCUMENT_PROMPT) for doc, _ in docs]

    return document_separator.join(doc_strings)