import gradio as gr import torch import open_clip import mediapy as media from optim_utils import * import argparse # load args args = argparse.Namespace() args.__dict__.update(read_json("sample_config.json")) args.print_step = None # load model device = "cuda" if torch.cuda.is_available() else "cpu" model, _, preprocess = open_clip.create_model_and_transforms(args.clip_model, pretrained=args.clip_pretrain, device=device) args.counter = 0 def inference(target_image, prompt_len, iter): args.counter += 1 print(args.counter) if prompt_len is not None: args.prompt_len = int(prompt_len) else: args.prompt_len = 8 if iter is not None: args.iter = int(iter) else: args.iter = 1000 learned_prompt = optimize_prompt(model, preprocess, args, device, target_images=[target_image]) return learned_prompt def inference_text(target_prompt, prompt_len, iter): args.counter += 1 print(args.counter) if prompt_len is not None: args.prompt_len = min(int(prompt_len), 75) else: args.prompt_len = 8 if iter is not None: args.iter = min(int(iter), 3000) else: args.iter = 1000 learned_prompt = optimize_prompt(model, preprocess, args, device, target_prompts=[target_prompt]) return learned_prompt gr.Progress(track_tqdm=True) demo = gr.Blocks().queue(default_concurrency_limit=5) with demo: gr.Markdown("# PEZ Dispenser") gr.Markdown("## Hard Prompts Made Easy (PEZ)") gr.Markdown("*Want to generate a text prompt for your image that is useful for Stable Diffusion?*") gr.Markdown("This space can either generate a text fragment that describes your image, or it can shorten an existing text prompt. This space is using OpenCLIP-ViT/H, the same text encoder used by Stable Diffusion V2. After you generate a prompt, try it out on Stable Diffusion [here](https://huggingface.co/stabilityai/stable-diffusion-2-1-base), [here](https://huggingface.co/spaces/stabilityai/stable-diffusion) or on [Midjourney](https://docs.midjourney.com/). For a quick PEZ demo, try clicking on one of the examples at the bottom of this page.") gr.Markdown("For additional details, you can check out the [paper](https://arxiv.org/abs/2302.03668) and the code on [Github](https://github.com/YuxinWenRick/hard-prompts-made-easy).") gr.Markdown("Note: Generation with 1000 steps takes ~60 seconds with a T4. Don't want to wait? You can also run on [Google Colab](https://colab.research.google.com/drive/1VSFps4siwASXDwhK_o29dKA9COvTnG8A?usp=sharing). Or, you can reduce the number of steps.") gr.HTML(""" <p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <br/> <a href="https://huggingface.co/spaces/tomg-group-umd/pez-dispenser?duplicate=true"> <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> <p/>""") with gr.Row(): with gr.Column(): gr.Markdown("### Image to Prompt") input_image = gr.Image(type="pil", label="Target Image") image_button = gr.Button("Generate Prompt") gr.Markdown("### Long Prompt to Short Prompt") input_prompt = gr.Textbox(label="Target Prompt") prompt_button = gr.Button("Distill Prompt") prompt_len_field = gr.Number(label="Prompt Length (max 75, recommend 8-16)", value=8) num_step_field = gr.Number(label="Optimization Steps (max 3000 because of limited resources)", value=1000) with gr.Column(): gr.Markdown("### Learned Prompt") output_prompt = gr.Textbox(label="Learned Prompt") image_button.click(inference, inputs=[input_image, prompt_len_field, num_step_field], outputs=output_prompt) prompt_button.click(inference_text, inputs=[input_prompt, prompt_len_field, num_step_field], outputs=output_prompt) gr.Examples([["sample.jpeg", 8, 1000]], inputs=[input_image, prompt_len_field, num_step_field], fn=inference, outputs=output_prompt, cache_examples=True) gr.Examples([["digital concept art of old wooden cabin in florida swamp, trending on artstation", 3, 1000]], inputs=[input_prompt, prompt_len_field, num_step_field], fn=inference_text, outputs=output_prompt, cache_examples=True) gr.Markdown("") demo.launch()