Q_and_A / main.py
tolu07's picture
Update main.py
352c4da verified
import textwrap
import numpy as np
import pandas as pd
from transformers import BlipProcessor, BlipForConditionalGeneration, DetrImageProcessor, DetrForObjectDetection
from PyPDF2 import PdfReader
import google.generativeai as genai
import google.ai.generativelanguage as glm
from PIL import Image
import torch
from IPython.display import Markdown
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
class ImageProcessor:
def __init__(self, image_path):
self.image_path = image_path
def get_caption(self, image_path):
# Implement image captioning logic here
"""
Generates a short caption for the provided image.
Args:
image_path (str): The path to the image file.
Returns:
str: A string representing the caption for the image.
"""
image = Image.open(image_path).convert('RGB')
model_name = "Salesforce/blip-image-captioning-large"
device = "cpu" # cuda
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(model_name).to(device)
inputs = processor(image, return_tensors='pt').to(device)
output = model.generate(**inputs, max_new_tokens=20)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
def detect_objects(self, image_path):
# Implement object detection logic here
"""
Detects objects in the provided image.
Args:
image_path (str): The path to the image file.
Returns:
str: A string with all the detected objects. Each object as '[x1, x2, y1, y2, class_name, confindence_score]'.
"""
image = Image.open(image_path).convert('RGB')
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
# convert outputs (bounding boxes and class logits) to COCO API
# let's only keep detections with score > 0.9
target_sizes = torch.tensor([image.size[::-1]])
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
detections = ""
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
detections += '[{}, {}, {}, {}]'.format(int(box[0]), int(box[1]), int(box[2]), int(box[3]))
detections += ' {}'.format(model.config.id2label[int(label)])
detections += ' {}\n'.format(float(score))
return detections
def make_prompt(self, query, image_captions, objects_detections):
# Implement prompt creation logic here
escaped_captions = image_captions.replace("'", "").replace('"', "").replace("\n", " ")
escaped_objects = objects_detections.replace("'", "").replace('"', "").replace("\n", " ")
prompt = textwrap.dedent("""You are a helpful and informative bot that answers questions using text from the image captions and objects detected included below. \
Be sure to respond in a complete sentence, being comprehensive, including all relevant background information. \
However, you are talking to a non-technical audience, so be sure to break down complicated concepts and \
strike a friendly and conversational tone. \
If the image captions or objects detected are irrelevant to the answer, you may ignore them.
QUESTION: '{query}'
IMAGE CAPTIONS: '{image_captions}'
OBJECTS DETECTED: '{objects_detected}'
ANSWER:
""").format(query=query, image_captions=escaped_captions, objects_detected=escaped_objects)
return prompt
def generate_answer(self, prompt):
# Implement answer generation logic here
model = genai.GenerativeModel('gemini-pro')
answer = model.generate_content(prompt)
return answer.text
class PDFProcessor:
def __init__(self, pdf_path):
self.pdf_path = pdf_path
def create_embedding_df(self, pdf_path):
# Implement PDF content vector store creation logic here
# Provide the path of the PDF file
pdfreader = PdfReader(pdf_path)
# Read text from PDF and divide it into smaller chunks
documents = []
for i, page in enumerate(pdfreader.pages):
content = page.extract_text()
if content:
# Create a document for each page
document = {
"Title": f"Page {i+1}", # Use the page number as the title
"Text": content
}
documents.append(document)
# Create a DataFrame from the documents
df = pd.DataFrame(documents)
# Define the model
model = 'models/embedding-001'
# Define a function to generate embeddings
def embed_fn(title, text):
return genai.embed_content(
model=model,
content=text,
task_type="retrieval_document",
title=title
)["embedding"]
# Generate embeddings for each document and store them in the DataFrame
df['Embeddings'] = df.apply(lambda row: embed_fn(row['Title'], row['Text']), axis=1)
return df
def find_best_passage(self, query, dataframe):
# Implement logic to find the best passage based on query
"""
Compute the distances between the query and each document in the dataframe
using the dot product.
"""
model = 'models/embedding-001'
query_embedding = genai.embed_content(model=model,
content=query,
task_type="retrieval_query")
dot_products = np.dot(np.stack(dataframe['Embeddings']), query_embedding["embedding"])
idx = np.argmax(dot_products)
# Return text from index with max value
return dataframe.iloc[idx]['Text']
def make_prompt(self, query, relevant_passage):
# Implement prompt creation logic for PDF processing
escaped = relevant_passage.replace("'", "").replace('"', "").replace("\n", " ")
prompt = textwrap.dedent("""You are a helpful and informative bot that answers questions using text from the reference passage included below. \
Be sure to respond in a complete sentence, being comprehensive, including all relevant background information. \
However, you are talking to a non-technical audience, so be sure to break down complicated concepts and \
strike a friendly and converstional tone. \
If the passage is irrelevant to the answer, you may ignore it.
QUESTION: '{query}'
PASSAGE: '{relevant_passage}'
ANSWER:
""").format(query=query, relevant_passage=escaped)
return prompt
def generate_answer(self, prompt):
# Implement answer generation logic for PDF processing
model = genai.GenerativeModel('gemini-pro')
answer = model.generate_content(prompt)
return answer.text