File size: 12,802 Bytes
ff4f460
 
d04912b
 
 
ff4f460
 
 
 
 
 
148c1e7
ff4f460
 
 
148c1e7
d04912b
 
 
 
ff4f460
 
 
d04912b
 
ff4f460
 
 
148c1e7
ff4f460
 
 
d04912b
 
ff4f460
 
 
 
 
 
 
 
 
 
 
 
 
aac20b5
ff4f460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148c1e7
 
 
 
 
 
 
 
 
f7d4dba
ff4f460
aac20b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4766a
aac20b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4766a
aac20b5
 
 
 
 
 
 
 
cd4766a
aac20b5
 
 
 
 
 
 
 
cd4766a
aac20b5
148c1e7
ff4f460
 
 
c6356a2
ff4f460
 
 
 
 
c6356a2
ff4f460
 
 
aac20b5
 
ff4f460
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148c1e7
 
 
 
 
aac20b5
ff4f460
 
 
 
 
 
 
aac20b5
ff4f460
 
 
 
f7d4dba
d04912b
 
 
 
ff4f460
 
 
d04912b
ff4f460
 
ea5ca15
 
 
 
 
 
 
 
 
 
d04912b
ff4f460
 
ea5ca15
 
 
 
 
 
 
 
 
 
d04912b
148c1e7
 
ea5ca15
 
 
 
 
 
 
 
 
 
 
 
 
 
148c1e7
 
ff4f460
d04912b
ff4f460
 
 
 
 
 
 
 
d04912b
 
ff4f460
d04912b
c933ce0
148c1e7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os

import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi

from src.about import CITATION_TEXT, INTRODUCTION_TEXT, LLM_BENCHMARKS_TEXT, TITLE
from src.populate import (
    MU_MATH_COLUMNS_DICT,
    U_MATH_COLUMNS_DICT,
    U_MATH_AND_MU_MATH_COLUMNS_DICT,
    Field,
    get_mu_math_leaderboard_df,
    get_u_math_leaderboard_df,
    get_joined_leaderboard_df,
)


def restart_space():
    TOKEN = os.environ.get("HF_TOKEN")  # A read/write token for your org
    API = HfApi(token=TOKEN)
    REPO_ID = "toloka/u-math-leaderboard"
    API.restart_space(repo_id=REPO_ID)


LEADERBOARD_U_MATH_DF = get_u_math_leaderboard_df()
LEADERBOARD_MU_MATH_DF = get_mu_math_leaderboard_df()
LEADERBOARD_U_MATH_MU_MATH_JOINED_DF = get_joined_leaderboard_df()


def init_leaderboard(dataframe: pd.DataFrame, columns_dict: dict[str, Field]) -> gr.components.Component:
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")

    def filter_dataframe_by_selected_columns(full_df: pd.DataFrame, columns: list[str]) -> pd.DataFrame:
        always_here_cols = [c.pretty_name for c in columns_dict.values() if c.never_hidden]
        selected_columns = [c for c in columns if c in full_df.columns and c not in always_here_cols]
        # keep the order of the columns
        filtered_df = full_df[[c for c in full_df.columns if c in (always_here_cols + selected_columns)]]
        return filtered_df

    def filter_dataframe_by_selected_tag_columns(
        full_df: pd.DataFrame, current_tag: str
    ) -> tuple[pd.DataFrame, list[str], str, str]:
        always_here_cols = [c.pretty_name for c in columns_dict.values() if c.never_hidden]
        selected_columns = [
            c.pretty_name for c in columns_dict.values() if current_tag in c.tags and c.pretty_name not in always_here_cols
        ]
        # keep the order of the columns
        filtered_df = full_df[[c for c in full_df.columns if c in (always_here_cols + selected_columns)]]
        _columns_to_select_visibility = [
            c.pretty_name for c in columns_dict.values() if not c.fully_hidden and not c.never_hidden
        ]
        return filtered_df, [c for c in _columns_to_select_visibility if c in filtered_df.columns], "All", "All"

    def filter_dataframe_by_search(full_df: pd.DataFrame, current_df: pd.DataFrame, search: str) -> pd.DataFrame:
        filtered_df = full_df[
            (full_df[columns_dict["model_name"].pretty_name].str.contains(search, case=False, na=False))
        ]
        return filtered_df[current_df.columns]

    def filter_dataframe_by_model_type(
        full_df: pd.DataFrame, current_df: pd.DataFrame, filter_name: str
    ) -> pd.DataFrame:
        if filter_name == "All":
            return full_df[current_df.columns]
        else:
            query_symbol = filter_name[0]
            filtered_df = full_df[full_df[columns_dict["model_type_symbol"].pretty_name] == query_symbol]
            return filtered_df[current_df.columns]

    def filter_dataframe_by_model_size(
        full_df: pd.DataFrame, current_df: pd.DataFrame, filter_name: str
    ) -> pd.DataFrame:
        if filter_name == "All":
            return full_df[current_df.columns]
        else:
            query_symbol = filter_name[0]
            filtered_df = full_df[full_df[columns_dict["model_size_symbol"].pretty_name] == query_symbol]
            return filtered_df[current_df.columns]

    def filter_dataframe_by_model_family(
        full_df: pd.DataFrame, current_df: pd.DataFrame, filter_name: str,
    ) -> pd.DataFrame:
        if filter_name == "All":
            return full_df[current_df.columns]
        else:
            filtered_df = full_df[full_df[columns_dict["model_family"].pretty_name] == filter_name]
            return filtered_df[current_df.columns]

    with gr.Column(scale=1) as col:
        with gr.Row():
            with gr.Column(scale=8):
                with gr.Accordion("➑️ See All Columns", open=False):
                    columns_to_select_visibility = [
                        c.pretty_name for c in columns_dict.values() if not c.fully_hidden and not c.never_hidden
                    ]
                    all_columns_selector = gr.CheckboxGroup(
                        choices=columns_to_select_visibility,
                        value=[
                            c.pretty_name
                            for c in columns_dict.values()
                            if c.pretty_name in columns_to_select_visibility and c.displayed_by_default
                        ],
                        label="Select Columns to Display:",
                        interactive=True,
                        container=False,
                    )
                with gr.Column(variant='panel'):
                    gr.Markdown("Visible Columns:", elem_id="visible-columns-label")
                    all_tags = {}
                    with gr.Row():
                        for c in columns_dict.values():
                            for tag in c.tags:
                                if tag not in all_tags:
                                    all_tags[tag] = gr.Button(tag, interactive=True, size="sm", variant="secondary", min_width=50)
            with gr.Column(scale=8):
                with gr.Row():
                    search_bar = gr.Textbox(
                        placeholder="πŸ” Search for your model and press ENTER...",
                        show_label=False,
                        elem_id="search-bar",
                    )

                with gr.Row():
                    model_type_filter_selector = gr.Dropdown(
                        label="Filter model types:",
                        choices=["All", "πŸ’™ Open-Weights", "πŸŸ₯ Proprietary"],
                        value="All",
                        elem_id="model-type-filter",
                        interactive=True,
                        multiselect=False,
                        min_width=120,
                    )
                    model_size_filter_selector = gr.Dropdown(
                        label="Filter model sizes:",
                        choices=["All", "πŸ›΄ Tiny (<5B)", "πŸš— Small (5-50B)", "🚚 Medium (50-100B)", "πŸš€ Large (>100B)"],
                        value="All",
                        elem_id="model-size-filter",
                        interactive=True,
                        multiselect=False,
                        min_width=120,
                    )
                    model_family_filter_selector = gr.Dropdown(
                        label="Filter model families:",
                        choices=["All"] + list(dataframe[columns_dict["model_family"].pretty_name].unique()),
                        value="All",
                        elem_id="model-family-filter",
                        interactive=True,
                        multiselect=False,
                        min_width=120,
                    )

        # create the hidden and visible dataframes to display
        hidden_leaderboard_df = gr.components.Dataframe(
            value=dataframe,
            datatype=[c.gradio_column_type for c in columns_dict.values()],
            visible=False,
            interactive=False,
        )
        leaderboard_df = gr.components.Dataframe(
            value=dataframe[[c.pretty_name for c in columns_dict.values() if c.displayed_by_default]],
            datatype=[c.gradio_column_type for c in columns_dict.values()],
            elem_id="leaderboard-df",
            interactive=False,
        )

        # Add the callbacks
        all_columns_selector.change(
            fn=filter_dataframe_by_selected_columns,
            inputs=[hidden_leaderboard_df, all_columns_selector],
            outputs=[leaderboard_df],
        )
        search_bar.submit(
            fn=filter_dataframe_by_search,
            inputs=[hidden_leaderboard_df, leaderboard_df, search_bar],
            outputs=[leaderboard_df],
        )
        model_type_filter_selector.change(
            fn=filter_dataframe_by_model_type,
            inputs=[hidden_leaderboard_df, leaderboard_df, model_type_filter_selector],
            outputs=[leaderboard_df],
        )
        model_size_filter_selector.change(
            fn=filter_dataframe_by_model_size,
            inputs=[hidden_leaderboard_df, leaderboard_df, model_size_filter_selector],
            outputs=[leaderboard_df],
        )
        model_family_filter_selector.change(
            fn=filter_dataframe_by_model_family,
            inputs=[hidden_leaderboard_df, leaderboard_df, model_family_filter_selector],
            outputs=[leaderboard_df],
        )
        # Wire up each visible-column button to filter by tag
        for tag, button in all_tags.items():
            button.click(
                fn=filter_dataframe_by_selected_tag_columns,
                inputs=[hidden_leaderboard_df, button],
                outputs=[leaderboard_df, all_columns_selector, model_type_filter_selector, model_size_filter_selector],
            )

        # On first load, show the default columns
        filter_dataframe_by_selected_columns(dataframe, all_columns_selector.value)
        return col


demo = gr.Blocks(css=".scatter-plot {height: 500px;}")
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    print(LEADERBOARD_U_MATH_DF)
    print(LEADERBOARD_MU_MATH_DF)

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ† U-MATH", elem_id="u-math-benchmark-tab-table", id=0):
            leaderboard_umath = init_leaderboard(LEADERBOARD_U_MATH_DF, U_MATH_COLUMNS_DICT)
            # gr.ScatterPlot(
            #     value=LEADERBOARD_U_MATH_DF,
            #     title="U-MATH: Text vs Visual Accuracy",
            #     x=U_MATH_COLUMNS_DICT["u_math_text_acc"].pretty_name,
            #     y=U_MATH_COLUMNS_DICT["u_math_visual_acc"].pretty_name,
            #     color=U_MATH_COLUMNS_DICT["model_family"].pretty_name,
            #     tooltip=[U_MATH_COLUMNS_DICT["full_model_name"].pretty_name, U_MATH_COLUMNS_DICT["u_math_acc"].pretty_name],
            #     elem_classes="scatter-plot",
            #     height=500,
            # )

        with gr.TabItem("πŸ… ΞΌ-MATH (Meta-Benchmark)", elem_id="mu-math-benchmark-tab-table", id=1):
            leaderboard_mumath = init_leaderboard(LEADERBOARD_MU_MATH_DF, MU_MATH_COLUMNS_DICT)
            # gr.ScatterPlot(
            #     value=LEADERBOARD_MU_MATH_DF,
            #     title="ΞΌ-MATH: True Positive Rate (Recall) vs True Negative Rate (Specificity)",
            #     x=MU_MATH_COLUMNS_DICT["mu_math_tpr"].pretty_name,
            #     y=MU_MATH_COLUMNS_DICT["mu_math_tnr"].pretty_name,
            #     color=MU_MATH_COLUMNS_DICT["model_family"].pretty_name,
            #     tooltip=[MU_MATH_COLUMNS_DICT["full_model_name"].pretty_name, MU_MATH_COLUMNS_DICT["mu_math_f1"].pretty_name],
            #     elem_classes="scatter-plot",
            #     height=500,
            # )

        with gr.TabItem("πŸ“Š U-MATH vs ΞΌ-MATH", elem_id="u-math-vs-mu-math-tab-table", id=2):
            leaderboard_aggregated = init_leaderboard(LEADERBOARD_U_MATH_MU_MATH_JOINED_DF, U_MATH_AND_MU_MATH_COLUMNS_DICT)
            # gr.ScatterPlot(
            #     value=LEADERBOARD_U_MATH_MU_MATH_JOINED_DF,
            #     title="U-MATH Accuracy (Solving) vs ΞΌ-MATH F1 Score (Judging)",
            #     x=U_MATH_AND_MU_MATH_COLUMNS_DICT["u_math_acc"].pretty_name,
            #     y=U_MATH_AND_MU_MATH_COLUMNS_DICT["mu_math_f1"].pretty_name,
            #     color=U_MATH_AND_MU_MATH_COLUMNS_DICT["model_family"].pretty_name,
            #     tooltip=[
            #         U_MATH_AND_MU_MATH_COLUMNS_DICT["full_model_name"].pretty_name,
            #         U_MATH_AND_MU_MATH_COLUMNS_DICT["u_math_text_acc"].pretty_name,
            #         U_MATH_AND_MU_MATH_COLUMNS_DICT["u_math_visual_acc"].pretty_name,
            #     ],
            #     elem_classes="scatter-plot",
            #     height=500,
            # )

        with gr.TabItem("πŸ“ About", elem_id="about-tab-table", id=3):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        citation_button = gr.Textbox(
            value=CITATION_TEXT,
            label="πŸ“™ Citation",
            lines=9,
            elem_id="citation-button",
            show_copy_button=True,
            container=True,
        )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=60 * 60)
scheduler.start()
# demo.queue(default_concurrency_limit=40).launch(ssr_mode=False)
demo.queue(default_concurrency_limit=40).launch(allowed_paths=[".cache"])