import copy import math import torch import torch.nn as nn import torch.nn.functional as F import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # device = torch.device("cpu") def clones(module, N): return nn.ModuleList([copy.deepcopy(module) for _ in range(N)]) def clone_params(param, N): return nn.ParameterList([copy.deepcopy(param) for _ in range(N)]) # TODO: replaced with https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html? class LayerNorm(nn.Module): def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps def forward(self, x): mean = x.mean(-1, keepdim=True) std = x.std(-1, keepdim=True) return self.a_2 * (x - mean) / (std + self.eps) + self.b_2 class GraphLayer(nn.Module): def __init__(self, in_features, hidden_features, out_features, num_of_nodes, num_of_heads, dropout, alpha, concat=True): super(GraphLayer, self).__init__() self.in_features = in_features # MyNote: Embedding size self.hidden_features = hidden_features # MyNote: Embedding size self.out_features = out_features # MyNote: Embedding size (ngoại trừ Decoder Graph, khác chỗ này) self.alpha = alpha # MyNote: hardcoded 0.1 self.concat = concat # MyNote: Encoder graph ->True; Decoder Graph -> False. self.num_of_nodes = num_of_nodes # MyNote: Số node trong Graph. self.num_of_heads = num_of_heads # MyNote: Số attention head. -> là 1 (VGNN/Mimic) # MyNote: gọi clones() nhưng List chỉ có 1 phần tử vì num_of_heads=1 (ghi trong paper). self.W = clones(nn.Linear(in_features, hidden_features), num_of_heads) self.a = clone_params(nn.Parameter(torch.rand(size=(1, 2 * hidden_features)), requires_grad=True), num_of_heads) self.ffn = nn.Sequential( nn.Linear(out_features, out_features), nn.ReLU() ) if not concat: self.V = nn.Linear(hidden_features, out_features) else: self.V = nn.Linear(num_of_heads * hidden_features, out_features) self.dropout = nn.Dropout(dropout) self.leakyrelu = nn.LeakyReLU(self.alpha) if concat: # MyNote: Ko hiểu khác nhau chỗ nào? self.norm = LayerNorm(hidden_features) else: self.norm = LayerNorm(hidden_features) def initialize(self): for i in range(len(self.W)): nn.init.xavier_normal_(self.W[i].weight.data) for i in range(len(self.a)): nn.init.xavier_normal_(self.a[i].data) if not self.concat: nn.init.xavier_normal_(self.V.weight.data) nn.init.xavier_normal_(self.out_layer.weight.data) def attention(self, linear, a, N, data, edge): """MyNote: _summary_ Args: linear (_type_): weights (R^(dxd)) a (_type_): bias (R^(1x(2*d))) N (_type_): number of nodes data (_type_): h_prime = Toàn bộ Nodes & Embedding của nó. edge (_type_): Vd: edge -> input_edges = 2x11664 108x108=11664 -> 108 lab-value/procedure... (one-hot encoding) Returns: _type_: _description_ """ data = linear(data).unsqueeze(0) assert not torch.isnan(data).any() # edge: 2*D x E h = torch.cat((data[:, edge[0, :], :], data[:, edge[1, :], :]), dim=0) data = data.squeeze(0) # h: N x out assert not torch.isnan(h).any() # edge_h: 2*D x E edge_h = torch.cat((h[0, :, :], h[1, :, :]), dim=1).transpose(0, 1) # edge: 2*D x E edge_e = torch.exp(self.leakyrelu(a.mm(edge_h).squeeze()) / np.sqrt(self.hidden_features * self.num_of_heads)) assert not torch.isnan(edge_e).any() # edge_e: E edge_e = torch.sparse_coo_tensor(edge, edge_e, torch.Size([N, N])) e_rowsum = torch.sparse.mm(edge_e, torch.ones(size=(N, 1)).to(device)) # e_rowsum: N x 1 row_check = (e_rowsum == 0) e_rowsum[row_check] = 1 zero_idx = row_check.nonzero()[:, 0] edge_e = edge_e.add( torch.sparse.FloatTensor(zero_idx.repeat(2, 1), torch.ones(len(zero_idx)).to(device), torch.Size([N, N]))) # type: ignore # edge_e: E h_prime = torch.sparse.mm(edge_e, data) assert not torch.isnan(h_prime).any() # h_prime: N x out h_prime.div_(e_rowsum) # h_prime: N x out assert not torch.isnan(h_prime).any() return h_prime def forward(self, edge, data=None): # MyNote: input: (input_edges, h_prime) # MyNote: Vd: edge -> input_edges = 2x11881 # MyNote: data -> h_prime = Toàn bộ Nodes & Embedding của nó. N = self.num_of_nodes if self.concat: # MyNote: hardcoded True # MyNote: Zip nhưng thực ra chỉ có 1 element vì Attention head là 1 (ghi trong paper). h_prime = torch.cat([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=1) else: h_prime = torch.stack([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=0).mean( dim=0) h_prime = self.dropout(h_prime) if self.concat: return F.elu(self.norm(h_prime)) else: return self.V(F.relu(self.norm(h_prime))) class VariationalGNN(nn.Module): def __init__(self, in_features, out_features, num_of_nodes, n_heads, n_layers, dropout, alpha, # MyNote: hardcoded 0.1 variational=True, none_graph_features=0, concat=True): # Save input parameters for later convenient restoration of the object for inference. self.kwargs = {'in_features': in_features, 'out_features': out_features, 'num_of_nodes': num_of_nodes, 'n_heads': n_heads, 'n_layers': n_layers, 'dropout': dropout, 'alpha': alpha, 'variational': variational, 'none_graph_features': none_graph_features, 'concat': concat} super(VariationalGNN, self).__init__() self.variational = variational # Add two more nodes: the 1st indicates the patient is normal; the last node is used to absorb features from specific nodes of specific patients, to make prediction. self.num_of_nodes = num_of_nodes + 2 - none_graph_features # MyNote: this is the lookup embedding in paper. (Patient) self.embed = nn.Embedding(self.num_of_nodes, in_features, padding_idx=0) self.in_att = clones( GraphLayer(in_features, in_features, in_features, self.num_of_nodes, n_heads, dropout, alpha, concat=True), n_layers) self.out_features = out_features self.out_att = GraphLayer(in_features, in_features, out_features, self.num_of_nodes, n_heads, dropout, alpha, concat=False) self.n_heads = n_heads self.dropout = nn.Dropout(dropout) self.parameterize = nn.Linear(out_features, out_features * 2) self.out_layer = nn.Sequential( nn.Linear(out_features, out_features), nn.ReLU(), nn.Dropout(dropout), nn.Linear(out_features, 1)) self.none_graph_features = none_graph_features #region none_graph_features > 0 if none_graph_features > 0: self.features_ffn = nn.Sequential( nn.Linear(none_graph_features, out_features//2), nn.ReLU(), nn.Dropout(dropout)) self.out_layer = nn.Sequential( nn.Linear(out_features + out_features//2, out_features), nn.ReLU(), nn.Dropout(dropout), nn.Linear(out_features, 1)) #endregion for i in range(n_layers): self.in_att[i].initialize() """MyNote: Hàm này để chi? -> data là 1 patient sample với multihot encoding (chỉ bệnh). Cần trả về các Edges nối các bệnh này với nhau. Nhớ rằng: mặc định tất cả các bệnh Connect với nhau. """ def data_to_edges(self, data): """MyNote: Must return (input_edges, output_edges)""" length = data.size()[0] nonzero = data.nonzero() # MyNote: return indices indicating non-zero values. if nonzero.size()[0] == 0: # MyNote: case mà Patient bình thường! (ko có chẩn đoán, xét nghiệm gì!) # MyNote: Why return so? shape(2, 1), shape(2, 1) Why length + 1? -> Khi bệnh nhân bình thường, vector bệnh của họ toàn là 0 -> cũng phải trả # ra cái gì đó (vậy là chọn Node đầu và node cuối) # MyNote: Right side: should include also torch.LongTensor([[0], [0]]) -> ám chỉ là "bình thường" (ko bệnh tật)??? return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]]) if self.training: mask = torch.rand(nonzero.size()[0]) mask = mask > 0.05 nonzero = nonzero[mask] if nonzero.size()[0] == 0: # MyNote: có phải ý là ngay cả khi Patient có issue, 5% trong số đó ta sẽ đối xử như là ko có issue??? return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]]) # MyNote: case: when (testing/validating/infering) OR 95% probability bệnh nhân có ít nhất 1 issue nào đó. nonzero = nonzero.transpose(0, 1) + 1 # MyNote: Why +1? -> Cộng để tăng Index vì có 2 Node giả đầu (là node chỉ bình thường) và cuối (là node absorb các node khác cho predict) lengths = nonzero.size()[1] input_edges = torch.cat((nonzero.repeat(1, lengths), nonzero.repeat(lengths, 1).transpose(0, 1) .contiguous().view((1, lengths ** 2))), dim=0) nonzero = torch.cat((nonzero, torch.LongTensor([[length + 1]]).to(device)), dim=1) lengths = nonzero.size()[1] output_edges = torch.cat((nonzero.repeat(1, lengths), nonzero.repeat(lengths, 1).transpose(0, 1) .contiguous().view((1, lengths ** 2))), dim=0) return input_edges.to(device), output_edges.to(device) def reparameterise(self, mu, logvar): if self.training: # Assume log_variation (NOT log_standard_deviation!) std = logvar.mul(0.5).exp_() # MyNote: tensor.new() -> Constructs a new tensor of the same data type as self tensor. eps = std.data.new(std.size()).normal_() return eps.mul(std).add_(mu) else: return mu def encoder_decoder(self, data): """Given a patient data, encode it into the total graph, then decode to the last node. Args: data ([N]): multi-hot encoding (of diagnose codes). E.g. shape = [1309] Returns: Tuple[Tensor, Tensor]: The last node's features, plus KL Divergence """ N = self.num_of_nodes input_edges, output_edges = self.data_to_edges(data) h_prime = self.embed(torch.arange(N).long().to(device)) # Encoder: for attn in self.in_att: h_prime = attn(input_edges, h_prime) if self.variational: # Even given only a patient's data, this parameterization affects the total graph. h_prime = self.parameterize(h_prime).view(-1, 2, self.out_features) h_prime = self.dropout(h_prime) mu = h_prime[:, 0, :] logvar = h_prime[:, 1, :] h_prime = self.reparameterise(mu, logvar) # h_prime.shape = [N, z_dim] e.g. (1311x256) # Essential variables (mu, ,logvar) for computing DL Divergence later. # Note: only consider the patient's graph (NOT the total graph). split = int(math.sqrt(len(input_edges[0]))) pat_diag_code_idx = input_edges[0][0:split] mu = mu[pat_diag_code_idx, :] logvar = logvar[pat_diag_code_idx, :] # Decoder: h_prime = self.out_att(output_edges, h_prime) if self.variational: """ Need to divide with mu.size()[0] because the original formula sums over all latent dimensions. """ return (h_prime[-1], # The last node's features. 0.5 * torch.sum(logvar.exp() - logvar - 1 + mu.pow(2)) / mu.size()[0] ) else: return (h_prime[-1], \ torch.tensor(0.0).to(device) ) def forward(self, data): # Concate batches batch_size = data.size()[0] # In eicu data the first feature whether have be admitted before is not included in the graph if self.none_graph_features == 0: # MyNote: self.none_graph_features hardcoded = 0!!! -> cái này ko phải ám chỉ là ko dùng features cho nodes! # MyNote: for each Patient-Encounter, encode the graph specifically for that. outputs = [self.encoder_decoder(data[i, :]) for i in range(batch_size)] # MyNote: return logits (output of out_layer()) -> later use BCEWithLogitsLoss return self.out_layer(F.relu(torch.stack([out[0] for out in outputs]))), \ torch.sum(torch.stack([out[1] for out in outputs])) else: outputs = [(data[i, :self.none_graph_features], self.encoder_decoder(data[i, self.none_graph_features:])) for i in range(batch_size)] return self.out_layer(F.relu( torch.stack([torch.cat((self.features_ffn(torch.FloatTensor([out[0]]).to(device)), out[1][0])) for out in outputs]))), \ torch.sum(torch.stack([out[1][1] for out in outputs]), dim=-1)