tnt306's picture
Run ok offline
5f1cd98
raw
history blame
14.8 kB
import copy
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = torch.device("cpu")
def clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def clone_params(param, N):
return nn.ParameterList([copy.deepcopy(param) for _ in range(N)])
# TODO: replaced with https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html?
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super(LayerNorm, self).__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class GraphLayer(nn.Module):
def __init__(self, in_features, hidden_features, out_features, num_of_nodes,
num_of_heads, dropout, alpha, concat=True):
super(GraphLayer, self).__init__()
self.in_features = in_features # MyNote: Embedding size
self.hidden_features = hidden_features # MyNote: Embedding size
self.out_features = out_features # MyNote: Embedding size (ngoại trừ Decoder Graph, khác chỗ này)
self.alpha = alpha # MyNote: hardcoded 0.1
self.concat = concat # MyNote: Encoder graph ->True; Decoder Graph -> False.
self.num_of_nodes = num_of_nodes # MyNote: Số node trong Graph.
self.num_of_heads = num_of_heads # MyNote: Số attention head. -> là 1 (VGNN/Mimic)
# MyNote: gọi clones() nhưng List chỉ có 1 phần tử vì num_of_heads=1 (ghi trong paper).
self.W = clones(nn.Linear(in_features, hidden_features), num_of_heads)
self.a = clone_params(nn.Parameter(torch.rand(size=(1, 2 * hidden_features)), requires_grad=True), num_of_heads)
self.ffn = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU()
)
if not concat:
self.V = nn.Linear(hidden_features, out_features)
else:
self.V = nn.Linear(num_of_heads * hidden_features, out_features)
self.dropout = nn.Dropout(dropout)
self.leakyrelu = nn.LeakyReLU(self.alpha)
if concat: # MyNote: Ko hiểu khác nhau chỗ nào?
self.norm = LayerNorm(hidden_features)
else:
self.norm = LayerNorm(hidden_features)
def initialize(self):
for i in range(len(self.W)):
nn.init.xavier_normal_(self.W[i].weight.data)
for i in range(len(self.a)):
nn.init.xavier_normal_(self.a[i].data)
if not self.concat:
nn.init.xavier_normal_(self.V.weight.data)
nn.init.xavier_normal_(self.out_layer.weight.data)
def attention(self, linear, a, N, data, edge):
"""MyNote: _summary_
Args:
linear (_type_): weights (R^(dxd))
a (_type_): bias (R^(1x(2*d)))
N (_type_): number of nodes
data (_type_): h_prime = Toàn bộ Nodes & Embedding của nó.
edge (_type_): Vd: edge -> input_edges = 2x11664
108x108=11664 -> 108 lab-value/procedure... (one-hot encoding)
Returns:
_type_: _description_
"""
data = linear(data).unsqueeze(0)
assert not torch.isnan(data).any()
# edge: 2*D x E
h = torch.cat((data[:, edge[0, :], :], data[:, edge[1, :], :]),
dim=0)
data = data.squeeze(0)
# h: N x out
assert not torch.isnan(h).any()
# edge_h: 2*D x E
edge_h = torch.cat((h[0, :, :], h[1, :, :]), dim=1).transpose(0, 1)
# edge: 2*D x E
edge_e = torch.exp(self.leakyrelu(a.mm(edge_h).squeeze()) / np.sqrt(self.hidden_features * self.num_of_heads))
assert not torch.isnan(edge_e).any()
# edge_e: E
edge_e = torch.sparse_coo_tensor(edge, edge_e, torch.Size([N, N]))
e_rowsum = torch.sparse.mm(edge_e, torch.ones(size=(N, 1)).to(device))
# e_rowsum: N x 1
row_check = (e_rowsum == 0)
e_rowsum[row_check] = 1
zero_idx = row_check.nonzero()[:, 0]
edge_e = edge_e.add(
torch.sparse.FloatTensor(zero_idx.repeat(2, 1), torch.ones(len(zero_idx)).to(device), torch.Size([N, N]))) # type: ignore
# edge_e: E
h_prime = torch.sparse.mm(edge_e, data)
assert not torch.isnan(h_prime).any()
# h_prime: N x out
h_prime.div_(e_rowsum)
# h_prime: N x out
assert not torch.isnan(h_prime).any()
return h_prime
def forward(self, edge, data=None):
# MyNote: input: (input_edges, h_prime)
# MyNote: Vd: edge -> input_edges = 2x11881
# MyNote: data -> h_prime = Toàn bộ Nodes & Embedding của nó.
N = self.num_of_nodes
if self.concat: # MyNote: hardcoded True
# MyNote: Zip nhưng thực ra chỉ có 1 element vì Attention head là 1 (ghi trong paper).
h_prime = torch.cat([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=1)
else:
h_prime = torch.stack([self.attention(l, a, N, data, edge) for l, a in zip(self.W, self.a)], dim=0).mean(
dim=0)
h_prime = self.dropout(h_prime)
if self.concat:
return F.elu(self.norm(h_prime))
else:
return self.V(F.relu(self.norm(h_prime)))
class VariationalGNN(nn.Module):
def __init__(self,
in_features,
out_features,
num_of_nodes,
n_heads,
n_layers,
dropout,
alpha, # MyNote: hardcoded 0.1
variational=True,
none_graph_features=0,
concat=True):
# Save input parameters for later convenient restoration of the object for inference.
self.kwargs = {'in_features': in_features,
'out_features': out_features,
'num_of_nodes': num_of_nodes,
'n_heads': n_heads,
'n_layers': n_layers,
'dropout': dropout,
'alpha': alpha,
'variational': variational,
'none_graph_features': none_graph_features,
'concat': concat}
super(VariationalGNN, self).__init__()
self.variational = variational
# Add two more nodes: the 1st indicates the patient is normal; the last node is used to absorb features from specific nodes of specific patients, to make prediction.
self.num_of_nodes = num_of_nodes + 2 - none_graph_features
# MyNote: this is the lookup embedding in paper. (Patient)
self.embed = nn.Embedding(self.num_of_nodes, in_features, padding_idx=0)
self.in_att = clones(
GraphLayer(in_features, in_features, in_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=True), n_layers)
self.out_features = out_features
self.out_att = GraphLayer(in_features, in_features, out_features, self.num_of_nodes,
n_heads, dropout, alpha, concat=False)
self.n_heads = n_heads
self.dropout = nn.Dropout(dropout)
self.parameterize = nn.Linear(out_features, out_features * 2)
self.out_layer = nn.Sequential(
nn.Linear(out_features, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
self.none_graph_features = none_graph_features
#region none_graph_features > 0
if none_graph_features > 0:
self.features_ffn = nn.Sequential(
nn.Linear(none_graph_features, out_features//2),
nn.ReLU(),
nn.Dropout(dropout))
self.out_layer = nn.Sequential(
nn.Linear(out_features + out_features//2, out_features),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(out_features, 1))
#endregion
for i in range(n_layers):
self.in_att[i].initialize()
"""MyNote: Hàm này để chi? -> data là 1 patient sample với multihot encoding (chỉ bệnh).
Cần trả về các Edges nối các bệnh này với nhau. Nhớ rằng: mặc định tất cả các bệnh Connect với nhau.
"""
def data_to_edges(self, data):
"""MyNote: Must return (input_edges, output_edges)"""
length = data.size()[0]
nonzero = data.nonzero() # MyNote: return indices indicating non-zero values.
if nonzero.size()[0] == 0: # MyNote: case mà Patient bình thường! (ko có chẩn đoán, xét nghiệm gì!)
# MyNote: Why return so? shape(2, 1), shape(2, 1) Why length + 1? -> Khi bệnh nhân bình thường, vector bệnh của họ toàn là 0 -> cũng phải trả
# ra cái gì đó (vậy là chọn Node đầu và node cuối)
# MyNote: Right side: should include also torch.LongTensor([[0], [0]]) -> ám chỉ là "bình thường" (ko bệnh tật)???
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
if self.training:
mask = torch.rand(nonzero.size()[0])
mask = mask > 0.05
nonzero = nonzero[mask]
if nonzero.size()[0] == 0:
# MyNote: có phải ý là ngay cả khi Patient có issue, 5% trong số đó ta sẽ đối xử như là ko có issue???
return torch.LongTensor([[0], [0]]), torch.LongTensor([[length + 1], [length + 1]])
# MyNote: case: when (testing/validating/infering) OR 95% probability bệnh nhân có ít nhất 1 issue nào đó.
nonzero = nonzero.transpose(0, 1) + 1 # MyNote: Why +1? -> Cộng để tăng Index vì có 2 Node giả đầu (là node chỉ bình thường) và cuối (là node absorb các node khác cho predict)
lengths = nonzero.size()[1]
input_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)
nonzero = torch.cat((nonzero, torch.LongTensor([[length + 1]]).to(device)), dim=1)
lengths = nonzero.size()[1]
output_edges = torch.cat((nonzero.repeat(1, lengths),
nonzero.repeat(lengths, 1).transpose(0, 1)
.contiguous().view((1, lengths ** 2))), dim=0)
return input_edges.to(device), output_edges.to(device)
def reparameterise(self, mu, logvar):
if self.training:
# Assume log_variation (NOT log_standard_deviation!)
std = logvar.mul(0.5).exp_()
# MyNote: tensor.new() -> Constructs a new tensor of the same data type as self tensor.
eps = std.data.new(std.size()).normal_()
return eps.mul(std).add_(mu)
else:
return mu
def encoder_decoder(self, data):
"""Given a patient data, encode it into the total graph, then decode to the last node.
Args:
data ([N]): multi-hot encoding (of diagnose codes). E.g. shape = [1309]
Returns:
Tuple[Tensor, Tensor]: The last node's features, plus KL Divergence
"""
N = self.num_of_nodes
input_edges, output_edges = self.data_to_edges(data)
h_prime = self.embed(torch.arange(N).long().to(device))
# Encoder:
for attn in self.in_att:
h_prime = attn(input_edges, h_prime)
if self.variational:
# Even given only a patient's data, this parameterization affects the total graph.
h_prime = self.parameterize(h_prime).view(-1, 2, self.out_features)
h_prime = self.dropout(h_prime)
mu = h_prime[:, 0, :]
logvar = h_prime[:, 1, :]
h_prime = self.reparameterise(mu, logvar) # h_prime.shape = [N, z_dim] e.g. (1311x256)
# Essential variables (mu, ,logvar) for computing DL Divergence later.
# Note: only consider the patient's graph (NOT the total graph).
split = int(math.sqrt(len(input_edges[0])))
pat_diag_code_idx = input_edges[0][0:split]
mu = mu[pat_diag_code_idx, :]
logvar = logvar[pat_diag_code_idx, :]
# Decoder:
h_prime = self.out_att(output_edges, h_prime)
if self.variational:
"""
Need to divide with mu.size()[0] because the original formula sums over all latent dimensions.
"""
return (h_prime[-1], # The last node's features.
0.5 * torch.sum(logvar.exp() - logvar - 1 + mu.pow(2)) / mu.size()[0]
)
else:
return (h_prime[-1], \
torch.tensor(0.0).to(device)
)
def forward(self, data):
# Concate batches
batch_size = data.size()[0]
# In eicu data the first feature whether have be admitted before is not included in the graph
if self.none_graph_features == 0: # MyNote: self.none_graph_features hardcoded = 0!!! -> cái này ko phải ám chỉ là ko dùng features cho nodes!
# MyNote: for each Patient-Encounter, encode the graph specifically for that.
outputs = [self.encoder_decoder(data[i, :]) for i in range(batch_size)]
# MyNote: return logits (output of out_layer()) -> later use BCEWithLogitsLoss
return self.out_layer(F.relu(torch.stack([out[0] for out in outputs]))), \
torch.sum(torch.stack([out[1] for out in outputs]))
else:
outputs = [(data[i, :self.none_graph_features],
self.encoder_decoder(data[i, self.none_graph_features:])) for i in range(batch_size)]
return self.out_layer(F.relu(
torch.stack([torch.cat((self.features_ffn(torch.FloatTensor([out[0]]).to(device)), out[1][0]))
for out in outputs]))), \
torch.sum(torch.stack([out[1][1] for out in outputs]), dim=-1)