Spaces:
Sleeping
Sleeping
Add statistical analysis
Browse files- analyse.py +408 -0
- api.py +3 -0
- config.ini +1 -0
- model_factory.py +42 -1
- requirements.txt +2 -0
- schemes.py +5 -0
- stegno.py +22 -11
- utils.py +1 -0
analyse.py
ADDED
|
@@ -0,0 +1,408 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import base64
|
| 4 |
+
from argparse import ArgumentParser
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from matplotlib import pyplot as plt
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
from datasets import load_dataset
|
| 11 |
+
from model_factory import ModelFactory
|
| 12 |
+
from stegno import generate
|
| 13 |
+
|
| 14 |
+
rng = torch.Generator(device="cpu")
|
| 15 |
+
rng.manual_seed(0)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def load_msgs(msg_lens: list[int], file: str | None = None):
|
| 19 |
+
msgs = None
|
| 20 |
+
if file is not None and os.path.isfile(file):
|
| 21 |
+
with open(file, "r") as f:
|
| 22 |
+
msgs = json.load(f)
|
| 23 |
+
if "readable" not in msgs and "random" not in msgs:
|
| 24 |
+
msgs = None
|
| 25 |
+
else:
|
| 26 |
+
return msgs
|
| 27 |
+
|
| 28 |
+
msgs = {
|
| 29 |
+
"readable": [],
|
| 30 |
+
"random": [],
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
c4_en = load_dataset("allenai/c4", "en", split="validation", streaming=True)
|
| 34 |
+
iterator = iter(c4_en)
|
| 35 |
+
|
| 36 |
+
for length in msg_lens:
|
| 37 |
+
random_msg = torch.randint(256, (length,), generator=rng)
|
| 38 |
+
base64_msg = base64.b64encode(bytes(random_msg.tolist())).decode(
|
| 39 |
+
"ascii"
|
| 40 |
+
)
|
| 41 |
+
msgs["random"].append(base64_msg)
|
| 42 |
+
|
| 43 |
+
readable_msg = next(iterator)["text"]
|
| 44 |
+
while len(readable_msg) < length:
|
| 45 |
+
readable_msg = next(iterator)["text"]
|
| 46 |
+
msgs["readable"].append(readable_msg[:length])
|
| 47 |
+
|
| 48 |
+
return msgs
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_prompts(n: int, min_length: int, file: str | None = None):
|
| 52 |
+
prompts = None
|
| 53 |
+
if file is not None and os.path.isfile(file):
|
| 54 |
+
with open(file, "r") as f:
|
| 55 |
+
prompts = json.load(f)
|
| 56 |
+
return prompts
|
| 57 |
+
|
| 58 |
+
prompts = []
|
| 59 |
+
|
| 60 |
+
c4_en = load_dataset("allenai/c4", "en", split="train", streaming=True)
|
| 61 |
+
iterator = iter(c4_en)
|
| 62 |
+
|
| 63 |
+
while len(prompts) < n:
|
| 64 |
+
text = next(iterator)["text"]
|
| 65 |
+
if len(text) < min_length:
|
| 66 |
+
continue
|
| 67 |
+
prompts.append(text)
|
| 68 |
+
|
| 69 |
+
return prompts
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def create_args():
|
| 73 |
+
parser = ArgumentParser()
|
| 74 |
+
|
| 75 |
+
# messages
|
| 76 |
+
parser.add_argument(
|
| 77 |
+
"--msgs-file", type=str, default=None, help="Where messages are stored"
|
| 78 |
+
)
|
| 79 |
+
parser.add_argument(
|
| 80 |
+
"--msgs-lengths",
|
| 81 |
+
nargs=3,
|
| 82 |
+
type=int,
|
| 83 |
+
help="Range of messages' lengths. This is parsed in form: <start> <end> <step>",
|
| 84 |
+
)
|
| 85 |
+
parser.add_argument(
|
| 86 |
+
"--msgs-per-length",
|
| 87 |
+
type=int,
|
| 88 |
+
default=5,
|
| 89 |
+
help="Number of messages per length",
|
| 90 |
+
)
|
| 91 |
+
# prompts
|
| 92 |
+
parser.add_argument(
|
| 93 |
+
"--prompts-file",
|
| 94 |
+
type=str,
|
| 95 |
+
default=None,
|
| 96 |
+
help="Where prompts are stored",
|
| 97 |
+
)
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
"--num-prompts",
|
| 100 |
+
type=int,
|
| 101 |
+
default=500,
|
| 102 |
+
help="Number of prompts",
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--prompt-size",
|
| 106 |
+
type=int,
|
| 107 |
+
default=50,
|
| 108 |
+
help="Size of prompts",
|
| 109 |
+
)
|
| 110 |
+
parser.add_argument(
|
| 111 |
+
"--prompts-min-length",
|
| 112 |
+
type=int,
|
| 113 |
+
default=100,
|
| 114 |
+
help="Min length of prompts",
|
| 115 |
+
)
|
| 116 |
+
# Others
|
| 117 |
+
parser.add_argument(
|
| 118 |
+
"--overwrite",
|
| 119 |
+
action="store_true",
|
| 120 |
+
help="Whether to overwrite prompts and messages files",
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
# Hyperparameters
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--gen-model",
|
| 126 |
+
type=str,
|
| 127 |
+
default="gpt2",
|
| 128 |
+
help="Model used to generate",
|
| 129 |
+
)
|
| 130 |
+
parser.add_argument(
|
| 131 |
+
"--deltas",
|
| 132 |
+
nargs=3,
|
| 133 |
+
type=float,
|
| 134 |
+
help="Range of delta. This is parsed in form: <start> <end> <step>",
|
| 135 |
+
)
|
| 136 |
+
parser.add_argument(
|
| 137 |
+
"--bases",
|
| 138 |
+
nargs=3,
|
| 139 |
+
type=int,
|
| 140 |
+
help="Range of base. This is parsed in form: <start> <end> <step>",
|
| 141 |
+
)
|
| 142 |
+
parser.add_argument(
|
| 143 |
+
"--judge-model",
|
| 144 |
+
type=str,
|
| 145 |
+
default="gpt2",
|
| 146 |
+
help="Model used to compute score perplexity of generated text",
|
| 147 |
+
)
|
| 148 |
+
# Results
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--repeat",
|
| 151 |
+
type=int,
|
| 152 |
+
default=1,
|
| 153 |
+
help="How many times to repeat for each set of parameters, prompts and messages",
|
| 154 |
+
)
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--results-load-file",
|
| 157 |
+
type=str,
|
| 158 |
+
default=None,
|
| 159 |
+
help="Where to load results",
|
| 160 |
+
)
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--results-save-file",
|
| 163 |
+
type=str,
|
| 164 |
+
default=None,
|
| 165 |
+
help="Where to save results",
|
| 166 |
+
)
|
| 167 |
+
parser.add_argument(
|
| 168 |
+
"--figs-dir",
|
| 169 |
+
type=str,
|
| 170 |
+
default=None,
|
| 171 |
+
help="Where to save figures",
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
return parser.parse_args()
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def get_results(args, prompts, msgs):
|
| 178 |
+
model, tokenizer = ModelFactory.load_model(args.gen_model)
|
| 179 |
+
results = []
|
| 180 |
+
|
| 181 |
+
for prompt in prompts[:1]:
|
| 182 |
+
for delta in np.arange(
|
| 183 |
+
args.deltas[0], args.deltas[1] + args.deltas[2], args.deltas[2]
|
| 184 |
+
):
|
| 185 |
+
for base in np.arange(
|
| 186 |
+
args.bases[0],
|
| 187 |
+
args.bases[1] + args.bases[2],
|
| 188 |
+
args.bases[2],
|
| 189 |
+
dtype=np.int32,
|
| 190 |
+
):
|
| 191 |
+
for k in msgs:
|
| 192 |
+
msg_type = k
|
| 193 |
+
for msg in msgs[k]:
|
| 194 |
+
msg_bytes = (
|
| 195 |
+
msg.encode("ascii")
|
| 196 |
+
if k == "readable"
|
| 197 |
+
else base64.b64decode(msg)
|
| 198 |
+
)
|
| 199 |
+
for _ in range(args.repeat):
|
| 200 |
+
text, msg_rate, tokens_info = generate(
|
| 201 |
+
tokenizer=tokenizer,
|
| 202 |
+
model=model,
|
| 203 |
+
prompt=prompt,
|
| 204 |
+
msg=msg_bytes,
|
| 205 |
+
start_pos_p=[0],
|
| 206 |
+
delta=delta,
|
| 207 |
+
msg_base=base,
|
| 208 |
+
seed_scheme="sha_left_hash",
|
| 209 |
+
window_length=1,
|
| 210 |
+
private_key=0,
|
| 211 |
+
min_new_tokens_ratio=1,
|
| 212 |
+
max_new_tokens_ratio=2,
|
| 213 |
+
num_beams=4,
|
| 214 |
+
repetition_penalty=1.5,
|
| 215 |
+
prompt_size=args.prompt_size,
|
| 216 |
+
)
|
| 217 |
+
results.append(
|
| 218 |
+
{
|
| 219 |
+
"msg_type": msg_type,
|
| 220 |
+
"delta": delta.item(),
|
| 221 |
+
"base": base.item(),
|
| 222 |
+
"perplexity": ModelFactory.compute_perplexity(
|
| 223 |
+
args.judge_model, text
|
| 224 |
+
),
|
| 225 |
+
"msg_rate": msg_rate,
|
| 226 |
+
}
|
| 227 |
+
)
|
| 228 |
+
return results
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def process_results(results, save_dir):
|
| 232 |
+
data = {
|
| 233 |
+
"perplexities": {
|
| 234 |
+
"random": {},
|
| 235 |
+
"readable": {},
|
| 236 |
+
},
|
| 237 |
+
"msg_rates": {
|
| 238 |
+
"random": {},
|
| 239 |
+
"readable": {},
|
| 240 |
+
},
|
| 241 |
+
}
|
| 242 |
+
for r in results:
|
| 243 |
+
msg_type = r["msg_type"]
|
| 244 |
+
base = r["base"]
|
| 245 |
+
delta = r["delta"]
|
| 246 |
+
msg_rate = r["msg_rate"]
|
| 247 |
+
perplexity = r["perplexity"]
|
| 248 |
+
|
| 249 |
+
if (base, delta) not in data["msg_rates"][msg_type]:
|
| 250 |
+
data["msg_rates"][msg_type][(base, delta)] = []
|
| 251 |
+
data["msg_rates"][msg_type][(base, delta)].append(msg_rate)
|
| 252 |
+
|
| 253 |
+
if (base, delta) not in data["perplexities"][msg_type]:
|
| 254 |
+
data["perplexities"][msg_type][(base, delta)] = []
|
| 255 |
+
data["perplexities"][msg_type][(base, delta)].append(perplexity)
|
| 256 |
+
|
| 257 |
+
bases = {
|
| 258 |
+
"perplexities": {
|
| 259 |
+
"random": [],
|
| 260 |
+
"readable": [],
|
| 261 |
+
},
|
| 262 |
+
"msg_rates": {
|
| 263 |
+
"random": [],
|
| 264 |
+
"readable": [],
|
| 265 |
+
},
|
| 266 |
+
}
|
| 267 |
+
deltas = {
|
| 268 |
+
"perplexities": {
|
| 269 |
+
"random": [],
|
| 270 |
+
"readable": [],
|
| 271 |
+
},
|
| 272 |
+
"msg_rates": {
|
| 273 |
+
"random": [],
|
| 274 |
+
"readable": [],
|
| 275 |
+
},
|
| 276 |
+
}
|
| 277 |
+
values = {
|
| 278 |
+
"perplexities": {
|
| 279 |
+
"random": [],
|
| 280 |
+
"readable": [],
|
| 281 |
+
},
|
| 282 |
+
"msg_rates": {
|
| 283 |
+
"random": [],
|
| 284 |
+
"readable": [],
|
| 285 |
+
},
|
| 286 |
+
}
|
| 287 |
+
base_set = set()
|
| 288 |
+
delta_set = set()
|
| 289 |
+
for metric in data:
|
| 290 |
+
for msg_type in data[metric]:
|
| 291 |
+
for k in data[metric][msg_type]:
|
| 292 |
+
s = sum(data[metric][msg_type][k])
|
| 293 |
+
cnt = len(data[metric][msg_type][k])
|
| 294 |
+
data[metric][msg_type][k] = s / cnt
|
| 295 |
+
|
| 296 |
+
bases[metric][msg_type].append(k[0])
|
| 297 |
+
deltas[metric][msg_type].append(k[1])
|
| 298 |
+
values[metric][msg_type].append(s / cnt)
|
| 299 |
+
base_set.add(k[0])
|
| 300 |
+
delta_set.add(k[1])
|
| 301 |
+
for metric in data:
|
| 302 |
+
for msg_type in data[metric]:
|
| 303 |
+
bases[metric][msg_type] = np.array(bases[metric][msg_type], dtype=np.int32)
|
| 304 |
+
deltas[metric][msg_type] = np.array(deltas[metric][msg_type], dtype=np.int32)
|
| 305 |
+
values[metric][msg_type] = np.array(values[metric][msg_type], dtype=np.float32)
|
| 306 |
+
|
| 307 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 308 |
+
for metric in data:
|
| 309 |
+
for msg_type in data[metric]:
|
| 310 |
+
fig = plt.figure(dpi=300)
|
| 311 |
+
s = lambda x: 3.0 + x * (3 if metric == "msg_rates" else 0.1)
|
| 312 |
+
plt.scatter(
|
| 313 |
+
bases[metric][msg_type],
|
| 314 |
+
deltas[metric][msg_type],
|
| 315 |
+
s(values[metric][msg_type]),
|
| 316 |
+
)
|
| 317 |
+
plt.savefig(
|
| 318 |
+
os.path.join(save_dir, f"{metric}_{msg_type}_scatter.pdf"),
|
| 319 |
+
bbox_inches="tight",
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
os.makedirs(os.path.join(save_dir, "delta_effect"), exist_ok=True)
|
| 323 |
+
for metric in data:
|
| 324 |
+
for msg_type in data[metric]:
|
| 325 |
+
for base_value in base_set:
|
| 326 |
+
mask = bases[metric][msg_type] == base_value
|
| 327 |
+
fig = plt.figure(dpi=300)
|
| 328 |
+
s = lambda x: x / (1.0 if metric == "msg_rates" else 10.0)
|
| 329 |
+
plt.plot(
|
| 330 |
+
deltas[metric][msg_type][mask],
|
| 331 |
+
values[metric][msg_type][mask],
|
| 332 |
+
)
|
| 333 |
+
plt.savefig(
|
| 334 |
+
os.path.join(save_dir, f"delta_effect/{metric}_{msg_type}_base{base_value}.pdf"),
|
| 335 |
+
bbox_inches="tight",
|
| 336 |
+
)
|
| 337 |
+
os.makedirs(os.path.join(save_dir, "base_effect"), exist_ok=True)
|
| 338 |
+
for metric in data:
|
| 339 |
+
for msg_type in data[metric]:
|
| 340 |
+
for delta_value in delta_set:
|
| 341 |
+
mask = deltas[metric][msg_type] == delta_value
|
| 342 |
+
fig = plt.figure(dpi=300)
|
| 343 |
+
s = lambda x: x / (1.0 if metric == "msg_rates" else 10.0)
|
| 344 |
+
plt.plot(
|
| 345 |
+
bases[metric][msg_type][mask],
|
| 346 |
+
values[metric][msg_type][mask],
|
| 347 |
+
)
|
| 348 |
+
plt.savefig(
|
| 349 |
+
os.path.join(save_dir, f"base_effect/{metric}_{msg_type}_delta{delta_value}.pdf"),
|
| 350 |
+
bbox_inches="tight",
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
def main(args):
|
| 355 |
+
prompts = load_prompts(
|
| 356 |
+
args.num_prompts,
|
| 357 |
+
args.prompts_min_length,
|
| 358 |
+
args.prompts_file if not args.overwrite else None,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
msgs_lens = []
|
| 362 |
+
for i in np.arange(
|
| 363 |
+
args.msgs_lengths[0],
|
| 364 |
+
args.msgs_lengths[1] + args.msgs_lengths[2],
|
| 365 |
+
args.msgs_lengths[2],
|
| 366 |
+
dtype=np.int32,
|
| 367 |
+
):
|
| 368 |
+
for _ in range(args.msgs_per_length):
|
| 369 |
+
msgs_lens.append(i)
|
| 370 |
+
|
| 371 |
+
msgs = load_msgs(
|
| 372 |
+
msgs_lens,
|
| 373 |
+
args.msgs_file if not args.overwrite else None,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
if args.msgs_file:
|
| 377 |
+
if not os.path.isfile(args.msgs_file) or args.overwrite:
|
| 378 |
+
os.makedirs(os.path.dirname(args.msgs_file), exist_ok=True)
|
| 379 |
+
with open(args.msgs_file, "w") as f:
|
| 380 |
+
json.dump(msgs, f)
|
| 381 |
+
print(f"Saved messages to {args.msgs_file}")
|
| 382 |
+
if args.prompts_file:
|
| 383 |
+
if not os.path.isfile(args.prompts_file) or args.overwrite:
|
| 384 |
+
os.makedirs(os.path.dirname(args.prompts_file), exist_ok=True)
|
| 385 |
+
with open(args.prompts_file, "w") as f:
|
| 386 |
+
json.dump(prompts, f)
|
| 387 |
+
print(f"Saved prompts to {args.prompts_file}")
|
| 388 |
+
|
| 389 |
+
if args.results_load_file:
|
| 390 |
+
with open(args.results_load_file, "r") as f:
|
| 391 |
+
results = json.load(f)
|
| 392 |
+
else:
|
| 393 |
+
results = get_results(args, prompts, msgs)
|
| 394 |
+
|
| 395 |
+
if args.results_save_file:
|
| 396 |
+
os.makedirs(os.path.dirname(args.results_save_file), exist_ok=True)
|
| 397 |
+
with open(args.results_save_file, "w") as f:
|
| 398 |
+
json.dump(results, f)
|
| 399 |
+
print(f"Saved results to {args.results_save_file}")
|
| 400 |
+
|
| 401 |
+
if args.figs_dir:
|
| 402 |
+
process_results(results, args.figs_dir)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
if __name__ == "__main__":
|
| 407 |
+
args = create_args()
|
| 408 |
+
main(args)
|
api.py
CHANGED
|
@@ -108,6 +108,9 @@ async def default_config():
|
|
| 108 |
"private_key": GlobalConfig.get(
|
| 109 |
"encrypt.default", "private_key"
|
| 110 |
),
|
|
|
|
|
|
|
|
|
|
| 111 |
"max_new_tokens_ratio": GlobalConfig.get(
|
| 112 |
"encrypt.default", "max_new_tokens_ratio"
|
| 113 |
),
|
|
|
|
| 108 |
"private_key": GlobalConfig.get(
|
| 109 |
"encrypt.default", "private_key"
|
| 110 |
),
|
| 111 |
+
"min_new_tokens_ratio": GlobalConfig.get(
|
| 112 |
+
"encrypt.default", "min_new_tokens_ratio"
|
| 113 |
+
),
|
| 114 |
"max_new_tokens_ratio": GlobalConfig.get(
|
| 115 |
"encrypt.default", "max_new_tokens_ratio"
|
| 116 |
),
|
config.ini
CHANGED
|
@@ -32,6 +32,7 @@ msg_base = int:2
|
|
| 32 |
seed_scheme = str:sha_left_hash
|
| 33 |
window_length = int:1
|
| 34 |
private_key = int:0
|
|
|
|
| 35 |
max_new_tokens_ratio = float:2.0
|
| 36 |
num_beams = int:4
|
| 37 |
repetition_penalty = float:1.0
|
|
|
|
| 32 |
seed_scheme = str:sha_left_hash
|
| 33 |
window_length = int:1
|
| 34 |
private_key = int:0
|
| 35 |
+
min_new_tokens_ratio = float:1.0
|
| 36 |
max_new_tokens_ratio = float:2.0
|
| 37 |
num_beams = int:4
|
| 38 |
repetition_penalty = float:1.0
|
model_factory.py
CHANGED
|
@@ -63,7 +63,8 @@ class ModelFactory:
|
|
| 63 |
@classmethod
|
| 64 |
def load_model(cls, name):
|
| 65 |
if name not in cls.models:
|
| 66 |
-
cls.__load_model(name)
|
|
|
|
| 67 |
|
| 68 |
if name != cls.run_model and cls.run_model is not None:
|
| 69 |
cls.models[cls.run_model].to(cls.load_device)
|
|
@@ -83,3 +84,43 @@ class ModelFactory:
|
|
| 83 |
return cls.tokenizers[name].model_max_length
|
| 84 |
else:
|
| 85 |
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@classmethod
|
| 64 |
def load_model(cls, name):
|
| 65 |
if name not in cls.models:
|
| 66 |
+
if cls.__load_model(name) is None:
|
| 67 |
+
return None, None
|
| 68 |
|
| 69 |
if name != cls.run_model and cls.run_model is not None:
|
| 70 |
cls.models[cls.run_model].to(cls.load_device)
|
|
|
|
| 84 |
return cls.tokenizers[name].model_max_length
|
| 85 |
else:
|
| 86 |
return 0
|
| 87 |
+
|
| 88 |
+
@classmethod
|
| 89 |
+
def compute_perplexity(cls, model_name, text):
|
| 90 |
+
# This code is copied from https://huggingface.co/docs/transformers/perplexity
|
| 91 |
+
model, tokenizer = cls.load_model(model_name)
|
| 92 |
+
if model is None or tokenizer is None:
|
| 93 |
+
return 0
|
| 94 |
+
device = model.device
|
| 95 |
+
encodings = tokenizer(text, return_tensors="pt").to(device)
|
| 96 |
+
|
| 97 |
+
max_length = model.config.n_positions
|
| 98 |
+
stride = max_length//2
|
| 99 |
+
seq_len = encodings.input_ids.size(1)
|
| 100 |
+
|
| 101 |
+
nlls = []
|
| 102 |
+
prev_end_loc = 0
|
| 103 |
+
for begin_loc in range(0, seq_len, stride):
|
| 104 |
+
end_loc = min(begin_loc + max_length, seq_len)
|
| 105 |
+
trg_len = end_loc - prev_end_loc # may be different from stride on last loop
|
| 106 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
|
| 107 |
+
target_ids = input_ids.clone()
|
| 108 |
+
target_ids[:, :-trg_len] = -100
|
| 109 |
+
|
| 110 |
+
with torch.no_grad():
|
| 111 |
+
outputs = model(input_ids, labels=target_ids)
|
| 112 |
+
|
| 113 |
+
# loss is calculated using CrossEntropyLoss which averages over valid labels
|
| 114 |
+
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels
|
| 115 |
+
# to the left by 1.
|
| 116 |
+
neg_log_likelihood = outputs.loss
|
| 117 |
+
|
| 118 |
+
nlls.append(neg_log_likelihood)
|
| 119 |
+
|
| 120 |
+
prev_end_loc = end_loc
|
| 121 |
+
if end_loc == seq_len:
|
| 122 |
+
break
|
| 123 |
+
|
| 124 |
+
ppl = torch.exp(torch.stack(nlls).mean()).item()
|
| 125 |
+
return ppl
|
| 126 |
+
|
requirements.txt
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
numpy==1.26.4
|
| 2 |
tqdm==4.66.4
|
| 3 |
transformers==4.41.2
|
|
|
|
| 4 |
PyYAML==6.0.1
|
| 5 |
scikit-learn==1.5.0
|
| 6 |
torch==2.3.0
|
|
@@ -8,3 +9,4 @@ cryptography==42.0.8
|
|
| 8 |
fastapi
|
| 9 |
gradio
|
| 10 |
uvicorn
|
|
|
|
|
|
| 1 |
numpy==1.26.4
|
| 2 |
tqdm==4.66.4
|
| 3 |
transformers==4.41.2
|
| 4 |
+
datasets==2.20.0
|
| 5 |
PyYAML==6.0.1
|
| 6 |
scikit-learn==1.5.0
|
| 7 |
torch==2.3.0
|
|
|
|
| 9 |
fastapi
|
| 10 |
gradio
|
| 11 |
uvicorn
|
| 12 |
+
matplotlib==3.9.1
|
schemes.py
CHANGED
|
@@ -49,6 +49,11 @@ class EncryptionBody(BaseModel):
|
|
| 49 |
title="Private key used to compute the seed for PRF",
|
| 50 |
ge=0,
|
| 51 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
max_new_tokens_ratio: float = Field(
|
| 53 |
default=GlobalConfig.get("encrypt.default", "max_new_tokens_ratio"),
|
| 54 |
title="Max length of generated text compared to the minimum length required to hide the message",
|
|
|
|
| 49 |
title="Private key used to compute the seed for PRF",
|
| 50 |
ge=0,
|
| 51 |
)
|
| 52 |
+
max_new_tokens_ratio: float = Field(
|
| 53 |
+
default=GlobalConfig.get("encrypt.default", "min_new_tokens_ratio"),
|
| 54 |
+
title="Min length of generated text compared to the minimum length required to hide the message",
|
| 55 |
+
ge=1,
|
| 56 |
+
)
|
| 57 |
max_new_tokens_ratio: float = Field(
|
| 58 |
default=GlobalConfig.get("encrypt.default", "max_new_tokens_ratio"),
|
| 59 |
title="Max length of generated text compared to the minimum length required to hide the message",
|
stegno.py
CHANGED
|
@@ -18,9 +18,11 @@ def generate(
|
|
| 18 |
window_length: int = 1,
|
| 19 |
salt_key: Union[int, None] = None,
|
| 20 |
private_key: Union[int, None] = None,
|
|
|
|
| 21 |
max_new_tokens_ratio: float = 2,
|
| 22 |
num_beams: int = 4,
|
| 23 |
repetition_penalty: float = 1.0,
|
|
|
|
| 24 |
):
|
| 25 |
"""
|
| 26 |
Generate the sequence containing the hidden data.
|
|
@@ -36,7 +38,6 @@ def generate(
|
|
| 36 |
window_length: length of window to compute the seed.
|
| 37 |
salt_key: salt to add to the seed.
|
| 38 |
private_key: private key used to compute the seed.
|
| 39 |
-
|
| 40 |
"""
|
| 41 |
if len(start_pos_p) == 1:
|
| 42 |
start_pos = start_pos_p[0]
|
|
@@ -47,9 +48,10 @@ def generate(
|
|
| 47 |
start_pos = int(start_pos) + window_length
|
| 48 |
|
| 49 |
tokenized_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 50 |
-
prompt_size
|
|
|
|
| 51 |
logits_processor = EncryptorLogitsProcessor(
|
| 52 |
-
prompt_ids=tokenized_input.input_ids,
|
| 53 |
msg=msg,
|
| 54 |
start_pos=start_pos,
|
| 55 |
delta=delta,
|
|
@@ -62,14 +64,21 @@ def generate(
|
|
| 62 |
salt_key=salt_key,
|
| 63 |
private_key=private_key,
|
| 64 |
)
|
| 65 |
-
min_length =
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
max_length = min(max_length, tokenizer.model_max_length)
|
| 70 |
min_length = min(min_length, max_length)
|
| 71 |
output_tokens = model.generate(
|
| 72 |
-
|
|
|
|
| 73 |
logits_processor=transformers.LogitsProcessorList([logits_processor]),
|
| 74 |
min_length=min_length,
|
| 75 |
max_length=max_length,
|
|
@@ -79,10 +88,12 @@ def generate(
|
|
| 79 |
)
|
| 80 |
|
| 81 |
output_tokens = output_tokens[:, prompt_size:]
|
| 82 |
-
output_text = tokenizer.batch_decode(
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
|
|
|
|
|
|
| 86 |
msg_rates, tokens_infos = logits_processor.validate(
|
| 87 |
output_tokens_post.input_ids
|
| 88 |
)
|
|
|
|
| 18 |
window_length: int = 1,
|
| 19 |
salt_key: Union[int, None] = None,
|
| 20 |
private_key: Union[int, None] = None,
|
| 21 |
+
min_new_tokens_ratio: float = 1,
|
| 22 |
max_new_tokens_ratio: float = 2,
|
| 23 |
num_beams: int = 4,
|
| 24 |
repetition_penalty: float = 1.0,
|
| 25 |
+
prompt_size: int = -1,
|
| 26 |
):
|
| 27 |
"""
|
| 28 |
Generate the sequence containing the hidden data.
|
|
|
|
| 38 |
window_length: length of window to compute the seed.
|
| 39 |
salt_key: salt to add to the seed.
|
| 40 |
private_key: private key used to compute the seed.
|
|
|
|
| 41 |
"""
|
| 42 |
if len(start_pos_p) == 1:
|
| 43 |
start_pos = start_pos_p[0]
|
|
|
|
| 48 |
start_pos = int(start_pos) + window_length
|
| 49 |
|
| 50 |
tokenized_input = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 51 |
+
if prompt_size == -1:
|
| 52 |
+
prompt_size = tokenized_input.input_ids.size(1)
|
| 53 |
logits_processor = EncryptorLogitsProcessor(
|
| 54 |
+
prompt_ids=tokenized_input.input_ids[:prompt_size],
|
| 55 |
msg=msg,
|
| 56 |
start_pos=start_pos,
|
| 57 |
delta=delta,
|
|
|
|
| 64 |
salt_key=salt_key,
|
| 65 |
private_key=private_key,
|
| 66 |
)
|
| 67 |
+
min_length = (
|
| 68 |
+
prompt_size
|
| 69 |
+
+ start_pos
|
| 70 |
+
+ logits_processor.get_message_len() * min_new_tokens_ratio
|
| 71 |
+
)
|
| 72 |
+
max_length = (
|
| 73 |
+
prompt_size
|
| 74 |
+
+ start_pos
|
| 75 |
+
+ logits_processor.get_message_len() * max_new_tokens_ratio
|
| 76 |
)
|
| 77 |
max_length = min(max_length, tokenizer.model_max_length)
|
| 78 |
min_length = min(min_length, max_length)
|
| 79 |
output_tokens = model.generate(
|
| 80 |
+
input_ids=tokenized_input.input_ids[:, :prompt_size],
|
| 81 |
+
attention_mask=tokenized_input.attention_mask[:, :prompt_size],
|
| 82 |
logits_processor=transformers.LogitsProcessorList([logits_processor]),
|
| 83 |
min_length=min_length,
|
| 84 |
max_length=max_length,
|
|
|
|
| 88 |
)
|
| 89 |
|
| 90 |
output_tokens = output_tokens[:, prompt_size:]
|
| 91 |
+
output_text = tokenizer.batch_decode(
|
| 92 |
+
output_tokens, skip_special_tokens=True
|
| 93 |
+
)[0]
|
| 94 |
+
output_tokens_post = tokenizer(
|
| 95 |
+
output_text, return_tensors="pt", add_special_tokens=False
|
| 96 |
+
).to(model.device)
|
| 97 |
msg_rates, tokens_infos = logits_processor.validate(
|
| 98 |
output_tokens_post.input_ids
|
| 99 |
)
|
utils.py
CHANGED
|
@@ -55,3 +55,4 @@ def static_init(cls):
|
|
| 55 |
if getattr(cls, "__static_init__", None):
|
| 56 |
cls.__static_init__()
|
| 57 |
return cls
|
|
|
|
|
|
| 55 |
if getattr(cls, "__static_init__", None):
|
| 56 |
cls.__static_init__()
|
| 57 |
return cls
|
| 58 |
+
|