File size: 13,095 Bytes
b5cf002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
from enum import Enum
from typing import List, Dict, Any
from dataclasses import dataclass

import os
import yaml

import pyalex
from pyalex import Works
from src.utils.io_utils import PROJECT_ROOT

import time
from requests.exceptions import RequestException
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type, wait_fixed



@dataclass
class ConfigAugmentation:
    """Configuration for OpenAlex features"""
    basic: Dict[str, bool] = None  # id, doi, title, etc
    source: Dict[str, bool] = None  # journal info
    authors: Dict[str, bool] = None  # author details
    metrics: Dict[str, bool] = None  # citations, fwci, etc
    classification: Dict[str, bool] = None  # topics, concepts
    access: Dict[str, bool] = None  # OA status
    related_works: Dict[str, bool] = None  # references
    abstract: bool = False

class DatasetType(Enum):
    FULL_RAW = "full_raw"
    PARTIAL_RAW = "partial_raw"
    FULL_AUGMENTED = "full_augmented"
    PARTIAL_AUGMENTED = "partial_augmented"


@dataclass
class Field:
    """Field configuration for data extraction"""
    name: str
    path: List[str]
    default: Any = None

class AlexFields:
    """OpenAlex field definitions"""
    
    BASIC = [
        Field("id", ["id"]),
        Field("doi", ["doi"]),
        Field("title", ["title"]),
        Field("display_name", ["display_name"]),
        Field("publication_year", ["publication_year"]),
        Field("publication_date", ["publication_date"]),
        Field("language", ["language"]),
        Field("type", ["type"]),
        Field("type_crossref", ["type_crossref"])
    ]
    
    SOURCE = [
        Field("journal_name", ["primary_location", "source", "display_name"]),
        Field("issn", ["primary_location", "source", "issn"]),
        Field("issn_l", ["primary_location", "source", "issn_l"]),
        Field("publisher", ["primary_location", "source", "host_organization_name"]),
        Field("type", ["primary_location", "source", "type"])
    ]

    METRICS = [
        Field("cited_by_count", ["cited_by_count"]),
        Field("cited_by_percentile", ["citation_normalized_percentile"]),
        Field("is_retracted", ["is_retracted"]),
        Field("fwci", ["fwci"]),
        Field("referenced_works_count", ["referenced_works_count"])
    ]

    ACCESS = [
        Field("is_oa", ["open_access", "is_oa"]),
        Field("oa_status", ["open_access", "oa_status"]),
        Field("oa_url", ["open_access", "oa_url"]),
        Field("pdf_url", ["primary_location", "pdf_url"]),
        Field("license", ["primary_location", "license"]) 
    ]

def get_nested_value(data: Dict, path: List[str], default: Any = None) -> Any:
    """Extract nested value from dictionary using path"""
    value = data
    for key in path:
        try:
            value = value[key]
        except (KeyError, TypeError):
            return default
    return value


class DataAugmenter:
    """Class for augmenting data with OpenAlex features"""

    def __init__(self):
        """Initialize augmenter with API credentials"""
        self.profile = self._load_profile()
        self.email = self.profile["email"]
        self.filters = ConfigAugmentation(
        basic={
            "id": True,
            "doi": True,
            "title": True,
            "display_name": True,
            "publication_year": True,
            "publication_date": True,
            "language": True,
            "type": True,
            "type_crossref": True
        },
        source={
            "journal_name": True,
            "issn": True,
            "issn_l": True,
            "publisher": True,
            "type": True
        },
        authors={
            "position": True,
            "name": True,
            "id": True,
            "orcid": True,
            "is_corresponding": True,
            "affiliations": False
        },
        metrics={
            "cited_by_count": True,
            "cited_by_percentile": False,
            "is_retracted": True,
            "fwci": True,
            "referenced_works_count": True
        },
        classification={
            "primary_topic": True,
            "topics": False,
            "concepts": False,
        },
        access={
            "is_oa": True,
            "oa_status": True,
            "oa_url": True,
            "pdf_url": True,
            "license": True
        },
        related_works={
            "references": True,
            "referenced_by_count": True,
            "related": True
        },
        abstract=True
    )
        
        pyalex.config.email = self.email
        
    def _load_profile(self) -> Dict[str, str]:
        """Load API credentials from profile"""
        profile_path = f"{PROJECT_ROOT}/user_information/profile.yaml"
        
        assert str(PROJECT_ROOT).split("/")[-1] == "MatchingPubs", "Please run this script in the github repo folder "
        assert os.path.exists(profile_path), "create a profile.yaml with your email (email:) and your api key (api_key:). Go here to get one https://dev.elsevier.com/"

        
        with open(profile_path, "r") as f:
            profile = yaml.safe_load(f)
            
        return {
            "email": profile["email"]
        }

    @retry(
        stop=stop_after_attempt(5),  # Retry up to 5 times
        wait=wait_exponential(multiplier=1, min=1, max=60),  # Exponential backoff,
        # wait=wait_fixed(.2),
        retry=retry_if_exception_type(RequestException)
    )
    def get_alex_features(self, doi: str) -> Dict:
        """Extract all OpenAlex features for a DOI"""
        try:
            work = Works()[f"https://doi.org/{doi}"]
            result = {}

            # Basic metadata
            result["basic"] = {
                field.name: get_nested_value(work, field.path, None)
                for field in AlexFields.BASIC
            }
            
            # Source/journal info
            result["source"] = {
                field.name: get_nested_value(work, field.path, None)
                for field in AlexFields.SOURCE
            }
            
            # Authors with affiliations
            try:
                result["authors"] = [
                    {
                        "position": auth.get("author_position", None),
                        "name": auth.get("author", {}).get("display_name", None),
                        "id": auth.get("author", {}).get("id", None),
                        "orcid": auth.get("author", {}).get("orcid", None),
                        "is_corresponding": auth.get("is_corresponding", None),
                        "affiliations": [
                            {
                                "name": inst.get("display_name", None),
                                "id": inst.get("id", None),
                                "country": inst.get("country_code", None),
                                "type": inst.get("type", None),
                                "ror": inst.get("ror", None)
                            }
                            for inst in auth.get("institutions", [])
                        ]
                    }
                    for auth in work.get("authorships", [])
                ]
            except:
                result["authors"] = None

            # Topics and classifications  
            try:
                result["classification"] = {
                    "primary_topic": {
                        "name": work.get("primary_topic", {}).get("display_name", None),
                        "score": work.get("primary_topic", {}).get("score", None),
                        "field": work.get("primary_topic", {}).get("field", {}).get("display_name", None),
                        "subfield": work.get("primary_topic", {}).get("subfield", {}).get("display_name", None)
                    },
                    "topics": [
                        {
                            "name": topic.get("display_name", None),
                            "score": topic.get("score", None),
                            "field": topic.get("field", {}).get("display_name", None)
                        }
                        for topic in work.get("topics", [])
                    ],
                    "concepts": [
                        {
                            "name": concept.get("display_name", None),
                            "level": concept.get("level", None),
                            "score": concept.get("score", None),
                            "wikidata": concept.get("wikidata", None)
                        }
                        for concept in work.get("concepts", [])
                    ]
                }
            except:
                result["classification"] = None

            # Metrics
            result["metrics"] = {
                field.name: get_nested_value(work, field.path, None)
                for field in AlexFields.METRICS
            }

            # Access info
            result["access"] = {
                field.name: get_nested_value(work, field.path, None)
                for field in AlexFields.ACCESS
            }

            # Abstract
            try:
                if "abstract_inverted_index" in work:
                    abstract_dict = work["abstract_inverted_index"]
                    if abstract_dict:
                        max_pos = max(max(positions) for positions in abstract_dict.values())
                        words = [""] * (max_pos + 1)
                        for word, positions in abstract_dict.items():
                            for pos in positions:
                                words[pos] = word
                        result["abstract"] = " ".join(words)
                    else:
                        result["abstract"] = None
                else:
                    result["abstract"] = None
            except:
                result["abstract"] = None

            return result

        except Exception as e:
            print(f"OpenAlex error for DOI {doi}")#: {e}")
            # return {}
            raise 

    def filter_augmented_data(self, data: Dict[str, Any], config: ConfigAugmentation = None) -> Dict[str, Any]:
        """Filter data based on configuration
        
        Args:
            data: Dictionary containing raw data
            config: Configuration specifying which features to include
            
        Returns:
            Filtered dictionary containing only the configured features
        """
        config = config or self.filters
        
        def filter_section(section_data: Dict[str, Any], section_config: Dict[str, bool]) -> Dict[str, Any]:
            """Filter a section of the data based on the section configuration"""
            if not isinstance(section_data, dict): return {}
            return {k: v for k, v in section_data.items() if k in section_config and section_config[k]}
        
        filtered_data = {}
        
        # Filter OpenAlex data
        alex_filtered = {}
        
        # Basic metadata
        if config.basic:
            alex_filtered["basic"] = filter_section(data.get("basic", {}), config.basic)
        
        # Source/journal info
        if config.source:
            alex_filtered["source"] = filter_section(data.get("source", {}), config.source)
        
        # Authors
        if config.authors:
            authors_data = data.get("authors", [])
            filtered_authors = []
            for author in authors_data:
                filtered_author = filter_section(author, config.authors)
                if config.authors.get("affiliations", False):
                    affiliations = author.get("affiliations", [])
                    filtered_author["affiliations"] = [
                        filter_section(aff, config.authors["affiliations"])
                        for aff in affiliations
                    ] if affiliations else []
                filtered_authors.append(filtered_author)
            alex_filtered["authors"] = filtered_authors
        
        # Metrics
        if config.metrics:
            alex_filtered["metrics"] = filter_section(data.get("metrics", {}), config.metrics)
        
        # Classification
        if config.classification:
            classification_data = data.get("classification", {})
            alex_filtered["classification"] = {
                k: v for k, v in classification_data.items() if k in config.classification and config.classification[k]
            } if classification_data else {}
        
        # Access info
        if config.access:
            alex_filtered["access"] = filter_section(data.get("access", {}), config.access)
        
        # Related works
        if config.related_works:
            alex_filtered["related_works"] = filter_section(data.get("related_works", {}), config.related_works)
        
        # Abstract
        if config.abstract and "abstract" in data:
            alex_filtered["abstract"] = data["abstract"]
        
        filtered_data = alex_filtered
    
        return filtered_data