# -*- coding: utf-8 -*-
"""Medllama use.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1pZiJn21DK8U77WfKyxw94zNVYnxR40LP
"""
#!pip install transformers accelerate peft bitsandbytes gradio
from huggingface_hub import notebook_login
import torch
notebook_login()
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
config = PeftConfig.from_pretrained("tmberooney/medllama")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf",load_in_4bit=True, torch_dtype=torch.float16, device_map="auto")
model = PeftModel.from_pretrained(model, "tmberooney/medllama")
tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = model.to('cuda:0')
"""### Using Gradio App"""
from transformers import pipeline
llama_pipeline = pipeline(
"text-generation", # LLM task
model=model,
torch_dtype=torch.float16,
device_map="auto",
tokenizer=tokenizer
)
SYSTEM_PROMPT = """[INST] <>
You are a helpful medical bot. Your answers are clear and concise with medical information.
<>
"""
# Formatting function for message and history
def format_message(message: str, history: list, memory_limit: int = 3) -> str:
"""
Formats the message and history for the Llama model.
Parameters:
message (str): Current message to send.
history (list): Past conversation history.
memory_limit (int): Limit on how many past interactions to consider.
Returns:
str: Formatted message string
"""
# always keep len(history) <= memory_limit
if len(history) > memory_limit:
history = history[-memory_limit:]
if len(history) == 0:
return SYSTEM_PROMPT + f"{message} [/INST]"
formatted_message = SYSTEM_PROMPT + f"{history[0][0]} [/INST] {history[0][1]} "
# Handle conversation history
for user_msg, model_answer in history[1:]:
formatted_message += f"[INST] {user_msg} [/INST] {model_answer} "
# Handle the current message
formatted_message += f"[INST] {message} [/INST]"
return formatted_message
from transformers import TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
# Generate a response from the Llama model
def get_model_response(message: str, history: list) -> str:
"""
Generates a conversational response from the Llama model.
Parameters:
message (str): User's input message.
history (list): Past conversation history.
Returns:
str: Generated response from the Llama model.
"""
query = format_message(message, history)
response = ""
sequences = llama_pipeline(
query,
generation_config = model.generation_config,
do_sample=True,
top_k=10,
streamer=streamer,
top_p=0.7,
temperature=0.7,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=1024,
)
generated_text = sequences[0]['generated_text']
response = generated_text[len(query):] # Remove the prompt from the output
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
import gradio as gr
gr.ChatInterface(fn=get_model_response,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
title="Medllama : The Medically Fine-tuned LLaMA-2").queue().launch()
!gradio deploy