File size: 2,620 Bytes
25bf539
1234c7c
 
135173a
25bf539
1234c7c
 
0f6cc97
1234c7c
92e317c
8713bc4
 
 
92e317c
 
 
 
8713bc4
92e317c
 
 
 
 
 
 
 
8713bc4
92e317c
 
 
 
 
 
 
 
 
8713bc4
92e317c
8713bc4
92e317c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8713bc4
 
 
 
 
 
92e317c
 
8713bc4
92e317c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import io
import timm
import torch
import streamlit as st
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform


class ImageClassifier(object):
    def __init__(self, model, labels):
        self.model = model
        self.labels = labels

    def get_top_5_predictions(self, image):        
        values, indices = torch.topk(self.get_output_probabilities(image), 5)
        return [
            {'label': self.labels[i], 'score': v.item()}
            for i, v in zip(indices, values)
        ]
    
    def get_output_probabilities(self, image):
        output = self.classify_image(image)
        return torch.nn.functional.softmax(output[0], dim=0)

    def classify_image(self, image):
        self.model.eval()
        transform = self.create_image_transform()
        return self.model(transform(image).unsqueeze(0))
    
    def create_image_transform(self):
        return create_transform(**resolve_data_config(
            self.model.pretrained_cfg, model=self.model))


class ImageClassificationApp(object):
    def __init__(self, title, classifier):
        self.title = title
        self.classifier = classifier

    def render(self):
        st.title(self.title)
        uploaded_image = self.get_uploaded_image()
        if uploaded_image is not None:
            self.show_image_and_results(uploaded_image)

    def get_uploaded_image(self):
        return st.file_uploader('Choose an image...', type=['jpg', 'png', 'jpeg'])
    
    def show_image_and_results(self, uploaded_image):
        self.show_uploaded_image(uploaded_image)
        self.show_classification_results(self.get_image(uploaded_image.read()))

    def show_uploaded_image(self, uploaded_image):
        st.image(uploaded_image, caption='Uploaded Image', use_column_width=True)

    def show_classification_results(self, image):
        st.subheader('Classification Results:')
        self.write_top_5_predictions(image)        

    def write_top_5_predictions(self, image):        
        for prediction in self.classifier.get_top_5_predictions(image):
            st.write(f"- {prediction['label']}: {prediction['score']:.4f}")

    def get_image(self, image_data):
        return Image.open(io.BytesIO(image_data))


if __name__ == '__main__':
    model = timm.create_model(
        'hf-hub:nateraw/resnet50-oxford-iiit-pet',
        pretrained=True
    )
    labels = model.pretrained_cfg['label_names']
    classifier = ImageClassifier(model, labels)
    ImageClassificationApp(
        'Pet Image Classification App', 
        classifier
    ).render()