File size: 3,589 Bytes
a97698b
 
 
e2a98a8
a97698b
 
 
e2a98a8
 
 
333de72
e2a98a8
 
 
a97698b
e2a98a8
 
 
 
 
 
 
a97698b
 
 
 
 
4a7c70f
a97698b
 
e2a98a8
a97698b
e2a98a8
 
 
 
 
 
 
 
 
a97698b
e2a98a8
 
a97698b
 
 
 
 
 
7efa9d0
 
e2a98a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7efa9d0
e2a98a8
f4e09c8
 
 
e2a98a8
a97698b
 
e2a98a8
 
 
 
 
a97698b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import torch
import git
import os, shutil

git.Repo.clone_from("https://huggingface.co/timroelofs123/face_re-aging", "./hf")

git.Repo.clone_from("https://github.com/timroelofs123/face_reaging", "./fr")

shutil.move('./fr/assets', '.')
shutil.move('./fr/model', '.')
shutil.move('./fr/scripts', '.')
shutil.move('./fr/utils', '.')

from model.models import UNet
from scripts.test_functions import process_image, process_video

# default settings
window_size = 512
stride = 256
steps = 18
frame_count = 100


model_path = "hf/best_unet_model.pth"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
unet_model = UNet().to(device)
unet_model.load_state_dict(torch.load(model_path, map_location=device))
unet_model.eval()

def block_img(image, source_age, target_age):
    return process_image(unet_model, image, video=False, source_age=source_age,
                          target_age=target_age, window_size=window_size, stride=stride)

def block_img_vid(image, source_age):
    return process_image(unet_model, image, video=True, source_age=source_age,
                          target_age=0, window_size=window_size, stride=stride, steps=steps)

def block_vid(video_path, source_age, target_age):
    return process_video(unet_model, video_path, source_age, target_age,
                          window_size=window_size, stride=stride, frame_count=frame_count)

demo_img = gr.Interface(
    fn=block_img,
    inputs=[
        gr.Image(type="pil"),
        gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"),
        gr.Slider(10, 90, value=80, step=1, label="Target age", info="Choose the age you want to become")
    ],
    outputs="image",
    examples=[
        ['assets/gradio_example_images/1.png', 20, 80],
        ['assets/gradio_example_images/2.png', 75, 40],
        ['assets/gradio_example_images/3.png', 30, 70],
        ['assets/gradio_example_images/4.png', 22, 60],
        ['assets/gradio_example_images/5.png', 28, 75],
        ['assets/gradio_example_images/6.png', 35, 15]
    ],
    description="Input an image of a person and age them from the source age to the target age."
)

demo_img_vid = gr.Interface(
    fn=block_img_vid,
    inputs=[
        gr.Image(type="pil"),
        gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"),
    ],
    outputs=gr.Video(),
    examples=[
        ['assets/gradio_example_images/1.png', 20],
        ['assets/gradio_example_images/2.png', 75],
        ['assets/gradio_example_images/3.png', 30],
        ['assets/gradio_example_images/4.png', 22],
        ['assets/gradio_example_images/5.png', 28],
        ['assets/gradio_example_images/6.png', 35]
    ],
    description="Input an image of a person and a video will be returned of the person at different ages."
)

demo_vid = gr.Interface(
    fn=block_vid,
    inputs=[
        gr.Video(),
        gr.Slider(10, 90, value=20, step=1, label="Current age", info="Choose your current age"),
        gr.Slider(10, 90, value=80, step=1, label="Target age", info="Choose the age you want to become")
    ],
    outputs=gr.Video(),
    examples=[
        ['assets/gradio_example_images/orig.mp4', 35, 60],
    ],
    description="Input a video of a person, and it will be aged frame-by-frame."
)

demo = gr.TabbedInterface([demo_img, demo_img_vid, demo_vid],
                          tab_names=['Image inference demo', 'Image animation demo', 'Video inference demo'],
                          title="Face Re-Aging Demo",
                          )

demo.launch()