File size: 903 Bytes
cf64e05
 
 
0de6eb2
cf64e05
0de6eb2
 
 
 
 
 
 
cf64e05
 
 
 
 
 
0de6eb2
cf64e05
 
0de6eb2
 
cf64e05
 
0de6eb2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr
from transformers import pipeline

# Function for image classification
def classify(image, model_name):
    try:
        pipe = pipeline("image-classification", model=model_name)
        results = pipe(image)
        return {result["label"]: round(result["score"], 2) for result in results}
    except Exception as e:
        # Handle errors gracefully, e.g., invalid model names
        return {"Error": str(e)}

# Gradio Interface
demo = gr.Interface(
    fn=classify,
    inputs=[
        gr.Image(type="pil", label="Upload an Image"),
        gr.Textbox(label="Enter timm Model Name", placeholder="e.g., timm/mobilenetv3_large_100.ra_in1k"),
    ],
    outputs=gr.Label(num_top_classes=3, label="Top Predictions"),
    title="Custom timm Model Image Classifier",
    description="Enter a timm model name from Hugging Face, upload an image, and get predictions.",
)

demo.launch()