AIE5-MidTerm / fine_tune_embeddings.py
thomfoolery's picture
final project submission
4915594
# this file is a WIP and an attempt to locally recreate https://colab.research.google.com/drive/1-h3rPUzV-j9VzD9Rg7ZLGKEp-jMNFaje?usp=sharing
# this script is not working as expected, it is not able to load the training data from the file
import uuid
import tqdm
import json
import asyncio
from pathlib import Path
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
CHUNK_SIZE = 1000
CHUNK_OVERLAP = CHUNK_SIZE // 2
QA_PROMPT = """\
Given the following context, you must generate questions based on only the provided context.
You are to generate {n_questions} questions which should be provided in the following format:
1. QUESTION #1
2. QUESTION #2
...
Context:
{context}
"""
fine_tuning_data_filepath = Path("data/finetuning")
fine_tuning_data_filepath.mkdir(parents=True, exist_ok=True)
async def create_questions(documents, n_questions, question_generation_chain):
questions = {}
relevant_docs = {}
for document in tqdm.tqdm(documents):
context = document.page_content
# get questions by invoking the question generation chain
response = await question_generation_chain.ainvoke(
{"context": context, "n_questions": n_questions}
)
# split the response into two questions
[question1, question2] = response.content.split("\n")
# generate a unique id for the first question
id1 = str(uuid.uuid4())
while id1 in questions:
id1 = str(uuid.uuid4())
# store the first question
questions[id1] = question1[2:].strip()
# generate a unique id for the second question
id2 = str(uuid.uuid4())
while id2 in questions:
id2 = str(uuid.uuid4())
# store the second question
questions[id2] = question2[2:].strip()
# Store the relevant doc for each questions
relevant_docs[id1] = [document.metadata["id"]]
relevant_docs[id2] = [document.metadata["id"]]
return questions, relevant_docs
async def main():
path = "data/scraped/clean"
text_loader = DirectoryLoader(path, glob="*.txt", loader_cls=UnstructuredMarkdownLoader)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = CHUNK_SIZE,
chunk_overlap = CHUNK_OVERLAP,
length_function = len
)
training_documents = text_splitter.split_documents(text_loader.load())
# Add unique id to each document
id_set = set()
for document in training_documents:
id = str(uuid.uuid4())
while id in id_set:
id = uuid.uuid4()
id_set.add(id)
document.metadata["id"] = id
TRAINING_DOC_LENGTH = len(training_documents)
BREAK1 = TRAINING_DOC_LENGTH - 24
BREAK2 = TRAINING_DOC_LENGTH - 12
training_split_documents = training_documents[:TRAINING_DOC_LENGTH - 24]
eval_split_documents = training_documents[BREAK1:BREAK2]
test_split_documents = training_documents[BREAK2:]
qa_chat_model = ChatOpenAI(
model="gpt-4o-mini",
temperature=0
)
qa_prompt_template = ChatPromptTemplate.from_template(QA_PROMPT)
question_generation_chain = qa_prompt_template | qa_chat_model
# try to load training data from file otherwise generate new data
try:
training_dataset = json.load(open(fine_tuning_data_filepath / "training_dataset.jsonl"))
training_questions = training_dataset["questions"]
training_relevant_contexts = training_dataset["relevant_contexts"]
training_corpus = training_dataset["corpus"]
except:
training_questions, training_relevant_contexts = await create_questions(training_split_documents, 2, question_generation_chain)
training_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
training_dataset = {
"questions" : training_questions,
"relevant_contexts" : training_relevant_contexts,
"corpus" : training_corpus
}
with open(fine_tuning_data_filepath /"training_dataset.jsonl", "w") as f:
json.dump(training_dataset, f)
# try to load eval data from file otherwise generate new data
try:
eval_dataset = json.load(open(fine_tuning_data_filepath / "eval_dataset.jsonl"))
eval_questions = eval_dataset["questions"]
eval_relevant_contexts = eval_dataset["relevant_contexts"]
eval_corpus = eval_dataset["corpus"]
except:
eval_questions, eval_relevant_contexts = await create_questions(eval_split_documents, 2, question_generation_chain)
eval_corpus = {eval_item.metadata["id"] : eval_item.page_content for eval_item in eval_split_documents}
eval_dataset = {
"questions" : eval_questions,
"relevant_contexts" : eval_relevant_contexts,
"corpus" : eval_corpus,
}
with open(fine_tuning_data_filepath /"eval_dataset.jsonl", "w") as f:
json.dump(eval_dataset, f)
# try to load test data from file otherwise generate new data
try:
test_dataset = json.load(open(fine_tuning_data_filepath / "test_dataset.jsonl"))
test_questions = test_dataset["questions"]
test_relevant_contexts = test_dataset["relevant_contexts"]
test_corpus = test_dataset["corpus"]
except:
test_questions, test_relevant_contexts = await create_questions(test_split_documents, 2, question_generation_chain)
test_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
test_dataset = {
"questions" : test_questions,
"relevant_contexts" : test_relevant_contexts,
"corpus" : test_corpus,
}
with open(fine_tuning_data_filepath /"test_dataset.jsonl", "w") as f:
json.dump(test_dataset, f)
import wandb
from torch.utils.data import DataLoader
from sentence_transformers import InputExample, SentenceTransformer
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.evaluation import InformationRetrievalEvaluator
from huggingface_hub import notebook_login
BATCH_SIZE = 10
MODEL_ID = "Snowflake/snowflake-arctic-embed-l"
model = SentenceTransformer(MODEL_ID)
wandb.init(mode="disabled")
corpus = training_dataset['corpus']
queries = training_dataset['questions']
relevant_docs = training_dataset['relevant_contexts']
examples = []
for query_id, query in queries.items():
doc_id = relevant_docs[query_id][0]
text = corpus[doc_id]
example = InputExample(texts=[query, text])
examples.append(example)
loader = DataLoader(
examples, batch_size=BATCH_SIZE
)
matryoshka_dimensions = [768, 512, 256, 128, 64]
inner_train_loss = MultipleNegativesRankingLoss(model)
train_loss = MatryoshkaLoss(
model, inner_train_loss, matryoshka_dims=matryoshka_dimensions
)
evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)
EPOCHS = 10
warmup_steps = int(len(loader) * EPOCHS * 0.1)
model.fit(
train_objectives=[(loader, train_loss)],
epochs=EPOCHS,
warmup_steps=warmup_steps,
output_path='AIE5-MidTerm-finetuned-embeddings',
show_progress_bar=True,
evaluator=evaluator,
evaluation_steps=50
)
notebook_login()
hf_username = "thomfoolery"
model.push_to_hub(f"{hf_username}/AIE5-MidTerm-finetuned-embeddings")
if __name__ == "__main__":
load_dotenv()
asyncio.run(main())