import streamlit as st from langchain.llms import HuggingFaceHub from transformers import T5Tokenizer from transformers import T5Model, T5ForConditionalGeneration #Function to return the response def load_answer(question): token_name = 'unicamp-dl/ptt5-base-portuguese-vocab' model_name = 'phpaiola/ptt5-base-summ-xlsum' tokenizer = T5Tokenizer.from_pretrained(token_name ) model_pt = T5ForConditionalGeneration.from_pretrained(model_name) inputs = tokenizer.encode(question, max_length=512, truncation=True, return_tensors='pt') summary_ids = model_pt.generate(inputs, max_length=256, min_length=32, num_beams=5, no_repeat_ngram_size=3, early_stopping=True) summary = tokenizer.decode(summary_ids[0]) return summary #App UI starts here st.image("https://www.viajenaviagem.com/wp-content/uploads/2020/02/belo-horizonte-pampulha.jpg.webp", caption='Autoria de Thiago Lanza. Todos os direitos reservados') st.header("Resumo de frases") st.subheader("Digite uma frase para que seja resumida") #Gets the user input def get_text(): input_text = st.text_input("Sua frase em português: ", key="input") return input_text user_input=get_text() response = load_answer(user_input) submit = st.button('Resumir') if submit: st.subheader("Resumo:") st.write(response)