Spaces:
Runtime error
Runtime error
import streamlit as st | |
from langchain.llms import HuggingFaceHub | |
from transformers import T5Tokenizer | |
from transformers import T5Model, T5ForConditionalGeneration | |
#Function to return the response | |
def load_answer(question): | |
token_name = 'unicamp-dl/ptt5-base-portuguese-vocab' | |
model_name = 'phpaiola/ptt5-base-summ-xlsum' | |
tokenizer = T5Tokenizer.from_pretrained(token_name ) | |
model_pt = T5ForConditionalGeneration.from_pretrained(model_name) | |
inputs = tokenizer.encode(question, max_length=512, truncation=True, return_tensors='pt') | |
summary_ids = model_pt.generate(inputs, max_length=256, min_length=32, num_beams=5, no_repeat_ngram_size=3, early_stopping=True) | |
summary = tokenizer.decode(summary_ids[0]) | |
return summary | |
#App UI starts here | |
st.image("https://www.viajenaviagem.com/wp-content/uploads/2020/02/belo-horizonte-pampulha.jpg.webp", caption='Autoria de Thiago Lanza. Todos os direitos reservados') | |
st.header("Resumo de frases") | |
st.subheader("Digite uma frase para que seja resumida") | |
#Gets the user input | |
def get_text(): | |
input_text = st.text_input("Sua frase em português: ", key="input") | |
return input_text | |
user_input=get_text() | |
response = load_answer(user_input) | |
submit = st.button('Resumir') | |
if submit: | |
st.subheader("Resumo:") | |
st.write(response) |