thianfoo's picture
Update app.py
201c7a0 verified
import gradio as gr
import numpy as np
import torch
import random
from diffusers import DiffusionPipeline
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
title = "GenAI StoryTeller"
description = """
Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for Speech Translation,
Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for Text-to-Speech and
StabilityAI's [StableDiffusion](https://huggingface.co/stabilityai/sdxl-turbo) model for Image Generation
"""
# Load speech translation pipeline
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
# Load text-to-speech processor from pretrained dataset
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
# Load diffusion pipeline for image generation
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
if torch.cuda.is_available():
power_device = "GPU"
else:
power_device = "CPU"
# Limit the file size
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Speech GenAI
# Function for translating different language using pretrained models
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
# Function to synthesise the text using the processor above
def synthesise(text):
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
# Main function
def speech_to_speech_translation(audio):
translated_text = translate(audio)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format
return 16000, synthesised_speech
# Function for text to speech
def text_to_speech(text):
synthesised_speech = synthesise(text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format
return 16000, synthesised_speech
# Image GenAI
# Text to Image
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt = prompt,
negative_prompt = negative_prompt,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
width = width,
height = height,
generator = generator
).images[0]
return image
demo = gr.Blocks()
# Audio translation using microphone as the input
audio_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./english.wav"], ["./chinese.wav"]],
title=title,
description=description,
)
# File translation using uploaded files as input
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./english.wav"], ["./chinese.wav"]],
title=title,
description=description,
)
# Text translation using text as input
text_translate = gr.Interface(
fn=text_to_speech,
inputs="textbox",
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description
)
# Inputs for Image Generation
prompt = gr.Text(
label="Prompt",
show_label=True,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=0.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=12,
step=1,
value=2,
)
result = gr.Image(label="Result", show_label=False)
# Text to Image interface
image_generation = gr.Interface(
fn=infer,
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
outputs=[result],
title=title,
description=description,
)
# Showcase the demo using different tabs of the different features
with demo:
gr.TabbedInterface([audio_translate, file_translate, text_translate, image_generation], ["Speech to Text", "Audio to Text", "Text to Speech", "Text to Image"])
demo.launch()