Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
from diffusers import DiffusionPipeline | |
from datasets import load_dataset | |
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
title = "GenAI StoryTeller" | |
description = """ | |
Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for Speech Translation, | |
Microsoft's [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for Text-to-Speech and | |
StabilityAI's [StableDiffusion](https://huggingface.co/stabilityai/sdxl-turbo) model for Image Generation | |
""" | |
# Load speech translation pipeline | |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# Load text-to-speech processor from pretrained dataset | |
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# Load diffusion pipeline for image generation | |
if torch.cuda.is_available(): | |
torch.cuda.max_memory_allocated(device=device) | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe = pipe.to(device) | |
else: | |
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) | |
pipe = pipe.to(device) | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
# Limit the file size | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# Speech GenAI | |
# Function for translating different language using pretrained models | |
def translate(audio): | |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) | |
return outputs["text"] | |
# Function to synthesise the text using the processor above | |
def synthesise(text): | |
inputs = processor(text=text, return_tensors="pt") | |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) | |
return speech.cpu() | |
# Main function | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format | |
return 16000, synthesised_speech | |
# Function for text to speech | |
def text_to_speech(text): | |
synthesised_speech = synthesise(text) | |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Ensure int16 format | |
return 16000, synthesised_speech | |
# Image GenAI | |
# Text to Image | |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt = prompt, | |
negative_prompt = negative_prompt, | |
guidance_scale = guidance_scale, | |
num_inference_steps = num_inference_steps, | |
width = width, | |
height = height, | |
generator = generator | |
).images[0] | |
return image | |
demo = gr.Blocks() | |
# Audio translation using microphone as the input | |
audio_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./english.wav"], ["./chinese.wav"]], | |
title=title, | |
description=description, | |
) | |
# File translation using uploaded files as input | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./english.wav"], ["./chinese.wav"]], | |
title=title, | |
description=description, | |
) | |
# Text translation using text as input | |
text_translate = gr.Interface( | |
fn=text_to_speech, | |
inputs="textbox", | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description | |
) | |
# Inputs for Image Generation | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=True, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=True, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=12, | |
step=1, | |
value=2, | |
) | |
result = gr.Image(label="Result", show_label=False) | |
# Text to Image interface | |
image_generation = gr.Interface( | |
fn=infer, | |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[result], | |
title=title, | |
description=description, | |
) | |
# Showcase the demo using different tabs of the different features | |
with demo: | |
gr.TabbedInterface([audio_translate, file_translate, text_translate, image_generation], ["Speech to Text", "Audio to Text", "Text to Speech", "Text to Image"]) | |
demo.launch() |