import streamlit as st import requests import os tok=os.getenv("TOK") def InitSession(): if "username" not in st.session_state: st.session_state.username="" if "projectname" not in st.session_state: st.session_state.projectname="" InitSession() def APP(): col1,col2=st.columns(2) with col1: #st.title("newMATTER") st.markdown("""

new MATTER

""",unsafe_allow_html=True) with col2: st.image("https://pub-e4d20ff4ef334a2894d440ac56d680db.r2.dev/flask.gif",width=190) tab1, tab2, tab3 = st.tabs(["PROTEIN ENGINEERING LAB", "EXECUTED OPERATIONS", "LAB OUTPUT"]) def SHOWTABS(): st.markdown(""" """, unsafe_allow_html=True) st.markdown('
CAUTION !
', unsafe_allow_html=True) with tab1: with st.form("bio",border=False): uid=None project_name=None with st.expander("setup",icon=":material/settings:"): uid=st.text_input("enter username") project_name=st.text_input("enter project name ") if not uid or not project_name: st.markdown(":orange-badge[⚠️ Set Username and Projectname]") #else: bio_input = st.text_area( "Protein Engineering Query", placeholder="Type your query here." ) execute_button=st.form_submit_button("execute") if execute_button: if uid and project_name: # Only process if fields are filled st.session_state.projectname = project_name st.session_state.username = uid payload={ "uid":uid, "pid":project_name, "high_level_bio_query":bio_input } response=requests.post("https://thexforce-combat-backend.hf.space/bio_context_language_plan",json=payload,headers={ "Content-Type":"application/json", "Authorization":f"Bearer {tok}" }) plan_response=response.json() if plan_response.get("status")=="active": st.code(f"> operation execution successfull", language="rust") st.success("Task completed!") else: st.warning(">>>Error") else: st.error("Please fill in both username and project name before submitting") with tab2: st.markdown("### newMATTER Bio Lab Operations") response=requests.get(f"https://thexforce-combat-backend.hf.space/user/operations/{uid}",headers={ "Content-Type":"application/json", "Authorization":f"Bearer {tok}" }) useroperations_json=response.json() with st.expander("operations"): st.json(useroperations_json) with tab3: st.markdown("### newMATTER Bio Lab Outputs") SHOWTABS()