Spaces:
Sleeping
Sleeping
import openai | |
from openai import OpenAI | |
import streamlit as st | |
from streamlit import session_state | |
import numpy as np | |
import json | |
import os | |
client = OpenAI() | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, util, InputExample | |
model = SentenceTransformer('models/transformer_model/') | |
from scipy import spatial | |
def cosine_similarity(x,y): | |
return 1 - spatial.distance.cosine(x,y) | |
def gpt_scorer(m,s): | |
response = client.chat.completions.create( | |
model="gpt-4", | |
messages=[ | |
{ | |
"role": "system", | |
"content": "You are UPSC answers evaluater. You will be given model answer and student answer. Evaluate it by comparing with the model answer. \n<<REMEMBER>>\nIt is 10 marks question. Give marks in the range of 0.5. (ex. 0,0.5,1...)\nPlease give marks generously. If the student answer body matches more than 70% with the model answer then give full marks for body. \nIf the student answer and model answer is not relevant then give 0 marks.\ngive output in json format. Give output in this format {\"total\":}\n<<OUTPUT>>" | |
}, | |
{ | |
"role": "user", | |
"content": f"Model answer: {m}"}, | |
{ | |
"role": "user", | |
"content": f"Student answer: {s}" | |
} | |
], | |
temperature=0, | |
max_tokens=256, | |
top_p=1, | |
frequency_penalty=0, | |
presence_penalty=0,seed = 10 | |
) | |
return json.loads(response.choices[0].message.content) | |
def embeddings_cosine(s1,s2,model): | |
embeddings1 = model.encode(s1) | |
embeddings2 = model.encode(s2) | |
cosine_scores = cosine_similarity(embeddings1, embeddings2) | |
cosine_scores = cosine_scores*10 | |
return np.abs(np.round(cosine_scores * 2) / 2) | |
def main_score(m,s): | |
score1 = embeddings_cosine(m,s,model) | |
score_g = gpt_scorer(m,s) | |
print(score_g) | |
score2 = score_g['total'] | |
print(score1,"our model") | |
percentage_difference = (abs(score1 - score2) / 10) * 100 | |
if percentage_difference > 30: | |
return score2 | |
elif score2 == 0: | |
return score2 | |
else: | |
return score1 | |
from st_pages import Page, Section, show_pages, add_page_title,add_indentation | |
st.set_page_config(page_title="Auto score Openai", page_icon="π") | |
st.markdown("<h1 style='text-align: center; color: black;'> Welcome to Our App! π</h1>", unsafe_allow_html=True) | |
if 'result' not in session_state: | |
session_state['result']= "" | |
st.title("Auto score") | |
text1= st.text_area(label= "Please write the model answer bellow", | |
placeholder="What does the teacher say?") | |
text2= st.text_area(label= "Please write the student answer bellow", | |
placeholder="What does the student say?") | |
def classify(text1,text2): | |
session_state['result'] = main_score(text1,text2) | |
st.text_area("result", value=session_state['result']) | |
st.button("Classify", on_click=classify, args=[text1,text2]) |