File size: 6,155 Bytes
08f62dc
6bae74b
08f62dc
 
 
6bae74b
08f62dc
 
 
 
 
 
6bae74b
08f62dc
 
db5edc2
6bae74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08f62dc
 
 
 
 
 
 
 
43b8c0f
08f62dc
43b8c0f
08f62dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bae74b
 
 
 
 
08f62dc
 
 
 
 
 
6bae74b
 
 
 
 
 
 
 
 
08f62dc
6bae74b
 
08f62dc
 
 
6bae74b
 
 
 
 
 
 
 
 
 
 
 
08f62dc
 
 
 
 
 
7ecf182
08f62dc
0b87ce8
 
 
 
08f62dc
0b87ce8
 
08f62dc
0b87ce8
 
08f62dc
 
7ecf182
4d9feef
 
 
08f62dc
2d63e89
 
5b2a298
6bae74b
08f62dc
6bae74b
08f62dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b87ce8
 
08f62dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bae74b
 
 
 
 
 
08f62dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import streamlit as st 
import os
import base64
import time
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM 
from transformers import pipeline
import torch 
import textwrap 
from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader 
from langchain.text_splitter import RecursiveCharacterTextSplitter 
from langchain.embeddings import SentenceTransformerEmbeddings 
from langchain.vectorstores import Chroma 
from langchain.llms import HuggingFacePipeline
from langchain.chains import RetrievalQA 
from constants import CHROMA_SETTINGS
from streamlit_chat import message

st.set_page_config(layout="wide")

device = torch.device('cpu')

checkpoint = "MBZUAI/LaMini-T5-738M"
print(f"Checkpoint path: {checkpoint}")  # Add this line for debugging
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
base_model = AutoModelForSeq2SeqLM.from_pretrained(
    checkpoint,
    device_map=device,
    torch_dtype=torch.float32
)


# checkpoint = "LaMini-T5-738M"
# tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# base_model = AutoModelForSeq2SeqLM.from_pretrained(
#     checkpoint,
#     device_map="auto",
#     torch_dtype = torch.float32,
#     from_tf=True
# )

persist_directory = "db"

@st.cache_resource
def data_ingestion():
    for root, dirs, files in os.walk("docs"):
        for file in files:
            if file.endswith(".pdf"):
                print(file)
                loader = PDFMinerLoader(os.path.join(root, file))
    documents = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=500)
    texts = text_splitter.split_documents(documents)
    #create embeddings here
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    #create vector store here
    db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
    db.persist()
    db=None 

@st.cache_resource
def llm_pipeline():
    pipe = pipeline(
        'text2text-generation',
        model = base_model,
        tokenizer = tokenizer,
        max_length = 256,
        do_sample = True,
        temperature = 0.3,
        top_p= 0.95,
        device=device
    )
    local_llm = HuggingFacePipeline(pipeline=pipe)
    return local_llm

@st.cache_resource
def qa_llm():
    llm = llm_pipeline()
    embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
    db = Chroma(persist_directory="db", embedding_function = embeddings, client_settings=CHROMA_SETTINGS)
    retriever = db.as_retriever()
    qa = RetrievalQA.from_chain_type(
        llm = llm,
        chain_type = "stuff",
        retriever = retriever,
        return_source_documents=True
    )
    return qa

def process_answer(instruction):
    response = ''
    instruction = instruction
    qa = qa_llm()
    generated_text = qa(instruction)
    answer = generated_text['result']
    return answer

def get_file_size(file):
    file.seek(0, os.SEEK_END)
    file_size = file.tell()
    file.seek(0)
    return file_size

# @st.cache_data
#function to display the PDF of a given file 
# def displayPDF(file):
#     # Opening file from file path
#     with open(file, "rb") as f:
#         base64_pdf = base64.b64encode(f.read()).decode('utf-8')

#     # Embedding PDF in HTML
#     pdf_display = F'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>'

#     # Displaying File
#     st.markdown(pdf_display, unsafe_allow_html=True)

# Display conversation history using Streamlit messages
def display_conversation(history):
    for i in range(len(history["generated"])):
        st.message(history["past"][i], is_user=True, key=str(i) + "_user")
        st.message(history["generated"][i], key=str(i))

def main():
    st.markdown("<h1 style='text-align: center; color: blue;'>Chat with your PDF πŸ¦œπŸ“„ </h1>", unsafe_allow_html=True)
    st.markdown("<h3 style='text-align: center; color: grey;'>Built by <a href='https://github.com/manas95826'>The Manas with ❀️ </a></h3>", unsafe_allow_html=True)

    st.markdown("<h2 style='text-align: center; color:red;'>Upload your PDF πŸ‘‡</h2>", unsafe_allow_html=True)

    uploaded_file = st.file_uploader("", type=["pdf"])

    if uploaded_file is not None:
        file_details = {
            "Filename": uploaded_file.name,
            "File size": get_file_size(uploaded_file)
        }
        filepath = "docs/"+uploaded_file.name
        with open(filepath, "wb") as temp_file:
                temp_file.write(uploaded_file.read())

        col1, col2= st.columns([1,2])
        with col1:
            st.markdown("<h4 style color:black;'>File details</h4>", unsafe_allow_html=True)
            st.json(file_details)
            # st.markdown("<h4 style color:black;'>File preview</h4>", unsafe_allow_html=True)
            # pdf_view = displayPDF(filepath)

        with col2:
            with st.spinner('Embeddings are in process...'):
                ingested_data = data_ingestion()
            st.success('Embeddings are created successfully!')
            st.markdown("<h4 style color:black;'>Chat Here</h4>", unsafe_allow_html=True)


            user_input = st.text_input("", key="input")

            # Initialize session state for generated responses and past messages
            if "generated" not in st.session_state:
                st.session_state["generated"] = ["I am ready to help you"]
            if "past" not in st.session_state:
                st.session_state["past"] = ["Hey there!"]
                
            # Search the database for a response based on user input and update session state
            if user_input:
                answer = process_answer({'query': user_input})
                st.session_state["past"].append(user_input)
                response = answer
                st.session_state["generated"].append(response)

            # Display conversation history using Streamlit messages
            if st.session_state["generated"]:
                display_conversation(st.session_state)
        

        




if __name__ == "__main__":
    main()