File size: 6,187 Bytes
03f64ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
from fastapi import FastAPI, UploadFile, File 
from PIL import Image
import os
import uvicorn
import torch
import numpy as np
from io import BytesIO
from torchvision import transforms , models
import torch.nn as nn
from huggingface_hub import hf_hub_download
import tempfile
from pathlib import Path

# Set up cache directory in a user-accessible location
CACHE_DIR = Path(tempfile.gettempdir()) / "huggingface_cache"
os.environ["TRANSFORMERS_CACHE"] = str(CACHE_DIR)
CACHE_DIR.mkdir(parents=True, exist_ok=True)


app = FastAPI()

# Define preprocessing
preprocessDensenet = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.RandomHorizontalFlip(p=0.3),
        transforms.RandomAffine(
            degrees=(-15, 15),
            translate=(0.1, 0.1),
            scale=(0.85, 1.15),
            fill=0
        ),
        transforms.RandomApply([
            transforms.ColorJitter(
                brightness=0.2,
                contrast=0.2
            )
        ], p=0.3),
        transforms.RandomApply([
            transforms.GaussianBlur(kernel_size=3)
        ], p=0.2),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        transforms.RandomErasing(p=0.1)
    ])

preprocessResnet = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.RandomHorizontalFlip(p=0.5),
        transforms.RandomAffine(
            degrees=(-10, 10),
            translate=(0.1, 0.1),
            scale=(0.9, 1.1),
            fill=0
        ),
        transforms.RandomApply([
            transforms.ColorJitter(
                brightness=0.3,
                contrast=0.3
            )
        ], p=0.3),
        transforms.RandomApply([
            transforms.GaussianBlur(kernel_size=3)
        ], p=0.2),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
        transforms.RandomErasing(p=0.2)
    ])

preprocessGooglenet = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.RandomHorizontalFlip(p=0.3),  # Less aggressive flipping for medical images
        transforms.RandomAffine(
            degrees=(-5, 5),  # Slight rotation
            translate=(0.05, 0.05),  # Small translations
            scale=(0.95, 1.05),  # Subtle scaling
            fill=0  # Fill with black
        ),
        transforms.RandomApply([
            transforms.ColorJitter(
                brightness=0.2,
                contrast=0.2
            )
        ], p=0.3),  # Subtle intensity variations
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])

def create_densenet169():
    model = models.densenet169(pretrained=False)
    model.classifier = nn.Sequential(
    nn.BatchNorm1d(model.classifier.in_features),  # Added batch normalization
    nn.Dropout(p=0.4),  # Increased dropout
    nn.Linear(model.classifier.in_features, 512),  # Added intermediate layer
    nn.ReLU(),
    nn.Dropout(p=0.3),
    nn.Linear(512, 2)
    )
    return model

def create_resnet18():
    model = models.resnet18(pretrained=False)
    model.fc = nn.Sequential(
    nn.Dropout(p=0.5),
    nn.Linear(model.fc.in_features, 2)
    )
    return model

def create_googlenet():
    model = models.googlenet(pretrained=False)
    model.aux1 = None
    model.aux2 = None
    model.fc = nn.Sequential(
    nn.Dropout(p=0.5),
    nn.Linear(model.fc.in_features, 2)
    )
    return model

def load_model_from_hf(repo_id, model_creator):
    try:
        model_path = hf_hub_download(
            repo_id=repo_id,
            filename="model.pth",
            cache_dir=CACHE_DIR
        )
        # Create model architecture
        model = model_creator()
        # Load the checkpoint
        checkpoint = torch.load(model_path, map_location=torch.device('cpu'))
        
        # Extract model_state_dict from the checkpoint
        if "model_state_dict" in checkpoint:
            state_dict = checkpoint["model_state_dict"]
        else:
            state_dict = checkpoint  # In case it's just the state_dict without wrapping
        
        model.load_state_dict(state_dict)
        model.eval()
        return model
    except Exception as e:
        print(f"Error loading model from {repo_id}: {str(e)}")
        return None

modelss = {"Densenet169": None, "Resnet18": None, "Googlenet": None}

modelss["Densenet169"] = load_model_from_hf(
    "Arham-Irfan/Densenet169_pnuemonia_binaryclassification",
    create_densenet169
)
modelss["Resnet18"] = load_model_from_hf(
    "Arham-Irfan/Resnet18_pnuemonia_binaryclassification",
    create_resnet18
)
modelss["Googlenet"] = load_model_from_hf(
    "Arham-Irfan/Googlenet_pnuemonia_binaryclassification",
    create_googlenet
)

classes = ["Normal", "Pneumonia"]

@app.post("/predict")
async def predict_pneumonia(file: UploadFile = File(...)):
    try:
        image = Image.open(BytesIO(await file.read())).convert("RGB")
        img_tensor1 = preprocessDensenet(image).unsqueeze(0)
        img_tensor2 = preprocessResnet(image).unsqueeze(0)
        img_tensor3 = preprocessGooglenet(image).unsqueeze(0)

        with torch.no_grad():
            output1 = torch.softmax(modelss["Densenet169"](img_tensor1), dim=1).numpy()[0]
            output2 = torch.softmax(modelss["Resnet18"](img_tensor2), dim=1).numpy()[0]
            output3 = torch.softmax(modelss["Googlenet"](img_tensor3), dim=1).numpy()[0]

        weights = [0.45, 0.33, 0.22]
        ensemble_prob = weights[0] * output1 + weights[1] * output2 + weights[2] * output3
        pred_index = np.argmax(ensemble_prob)

        return {
            "prediction": classes[pred_index],
            "confidence": float(ensemble_prob[pred_index]),
            "model_details": {
                "Densenet169": float(output1[pred_index]),
                "Resnet18": float(output2[pred_index]),
                "Googlenet": float(output3[pred_index])
            }
        }
    except Exception as e:
        return {"error": f"Prediction error: {str(e)}"}


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)