Spaces:
Sleeping
Sleeping
File size: 8,823 Bytes
8af689e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import torch
from torch import nn
import torch.nn.functional as F
from modules.util import ResBlock2d, SameBlock2d, UpBlock2d, DownBlock2d
from modules.dense_motion import DenseMotionNetwork
from modules.nerf_verts_util import RenderModel
class SPADE_layer(nn.Module):
def __init__(self, norm_channel, label_channel):
super(SPADE_layer, self).__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_channel, affine=False)
hidden_channel = 128
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_channel, hidden_channel, kernel_size=3, padding=1),
nn.ReLU()
)
self.mlp_gamma = nn.Conv2d(hidden_channel, norm_channel, kernel_size=3, padding=1)
self.mlp_beta = nn.Conv2d(hidden_channel, norm_channel, kernel_size=3, padding=1)
def forward(self, x, modulation_in):
normalized = self.param_free_norm(x)
modulation_in = F.interpolate(modulation_in, size=x.size()[2:], mode='nearest')
actv = self.mlp_shared(modulation_in)
gamma = self.mlp_gamma(actv)
beta = self.mlp_beta(actv)
out = normalized * (1 + gamma) + beta
return out
class SPADE_block(nn.Module):
def __init__(self, norm_channel, label_channel, out_channel):
super(SPADE_block, self).__init__()
self.SPADE_0 = SPADE_layer(norm_channel, label_channel)
self.relu_0 = nn.ReLU()
self.conv_0 = nn.Conv2d(norm_channel, norm_channel, kernel_size=3, padding=1)
self.SPADE_1 = SPADE_layer(norm_channel, label_channel)
self.relu_1 = nn.ReLU()
self.conv_1 = nn.Conv2d(norm_channel, out_channel, kernel_size=3, padding=1)
def forward(self, x, modulation_in):
out = self.SPADE_0(x, modulation_in)
out = self.relu_0(out)
out = self.conv_0(out)
out = self.SPADE_1(out, modulation_in)
out = self.relu_1(out)
out = self.conv_1(out)
return out
class SPADE_decoder(nn.Module):
def __init__(self, in_channel, mid_channel):
super(SPADE_decoder, self).__init__()
self.in_channel = in_channel
self.mid_channel = mid_channel
self.seg_conv = nn.Sequential(
nn.Conv2d(in_channel, mid_channel, kernel_size=3, padding=1),
nn.ReLU()
)
self.SPADE_0 = SPADE_block(in_channel, mid_channel, in_channel // 4)
self.up_0 = nn.UpsamplingBilinear2d(scale_factor=2)
in_channel = in_channel // 4
self.SPADE_1 = SPADE_block(in_channel, mid_channel, in_channel // 4)
self.up_1 = nn.UpsamplingBilinear2d(scale_factor=2)
in_channel = in_channel // 4
self.SPADE_2 = SPADE_block(in_channel, mid_channel, in_channel)
self.SPADE_3 = SPADE_block(in_channel, mid_channel, in_channel)
self.final = nn.Sequential(
nn.Conv2d(in_channel, 3, kernel_size=7, padding=3),
nn.Sigmoid()
)
def forward(self, x):
seg = self.seg_conv(x)
x = self.SPADE_0(x, seg)
x = self.up_0(x)
x = self.SPADE_1(x, seg)
x = self.up_1(x)
x = self.SPADE_2(x, seg)
x = self.SPADE_3(x, seg)
x = self.final(x)
return x
def calc_mean_std(feat, eps=1e-5):
# eps is a small value added to the variance to avoid divide-by-zero.
size = feat.size()
assert (len(size) == 4)
N, C = size[:2]
feat_var = feat.view(N, C, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(N, C, 1, 1)
feat_mean = feat.view(N, C, -1).mean(dim=2).view(N, C, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(x, modulation_in):
assert (x.size()[:2] == modulation_in.size()[:2])
size = x.size()
style_mean, style_std = calc_mean_std(modulation_in)
content_mean, content_std = calc_mean_std(x)
normalized_feat = (x - content_mean.expand(
size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
class AdaIN_layer(nn.Module):
def __init__(self, norm_channel, label_channel):
super(AdaIN_layer, self).__init__()
self.param_free_norm = nn.InstanceNorm2d(norm_channel, affine=False)
self.mlp_shared = nn.Sequential(
nn.Conv2d(label_channel, norm_channel, kernel_size=3, padding=1),
nn.ReLU()
)
def forward(self, x, modulation_in):
normalized = self.param_free_norm(x)
modulation_in = self.mlp_shared(modulation_in)
out = adaptive_instance_normalization(normalized, modulation_in)
return out
class OcclusionAwareGenerator_SPADE(nn.Module):
"""
Generator that given source image and and keypoints try to transform image according to movement trajectories
induced by keypoints. Generator follows Johnson architecture.
"""
def __init__(self, num_channels, num_kp, block_expansion, max_features, num_down_blocks,
num_bottleneck_blocks, estimate_occlusion_map=False, dense_motion_params=None, render_params=None,
estimate_jacobian=False):
super(OcclusionAwareGenerator_SPADE, self).__init__()
if dense_motion_params is not None:
self.dense_motion_network = DenseMotionNetwork(num_kp=num_kp, num_channels=num_channels,
estimate_occlusion_map=estimate_occlusion_map,
**dense_motion_params)
else:
self.dense_motion_network = None
self.first = SameBlock2d(num_channels, block_expansion, kernel_size=(7, 7), padding=(3, 3))
down_blocks = []
for i in range(num_down_blocks):
in_features = min(max_features, block_expansion * (2 ** i))
out_features = min(max_features, block_expansion * (2 ** (i + 1)))
down_blocks.append(DownBlock2d(in_features, out_features, kernel_size=(3, 3), padding=(1, 1)))
self.down_blocks = nn.ModuleList(down_blocks)
in_features = min(max_features, block_expansion * (2 ** num_down_blocks))
self.Render_model = RenderModel(in_channels=in_features, **render_params)
self.decoder = SPADE_decoder(in_channel=in_features * 2, mid_channel=128)
self.estimate_occlusion_map = estimate_occlusion_map
self.num_channels = num_channels
def deform_input(self, inp, deformation):
_, h_old, w_old, _ = deformation.shape
_, _, h, w = inp.shape
if h_old != h or w_old != w:
deformation = deformation.permute(0, 3, 1, 2)
deformation = F.interpolate(deformation, size=(h, w), mode='bilinear')
deformation = deformation.permute(0, 2, 3, 1)
return F.grid_sample(inp, deformation)
def forward(self, source_image, kp_driving, kp_source):
# Encoding (downsampling) part
out = self.first(source_image)
for i in range(len(self.down_blocks)):
out = self.down_blocks[i](out)
# Transforming feature representation according to deformation and occlusion
output_dict = {}
if self.dense_motion_network is not None:
dense_motion = self.dense_motion_network(source_image=source_image, kp_driving=kp_driving,
kp_source=kp_source)
output_dict['mask'] = dense_motion['mask']
output_dict['sparse_deformed'] = dense_motion['sparse_deformed']
if 'occlusion_map' in dense_motion:
occlusion_map = dense_motion['occlusion_map']
output_dict['occlusion_map'] = occlusion_map
else:
occlusion_map = None
deformation = dense_motion['deformation']
out = self.deform_input(out, deformation)
if occlusion_map is not None:
if out.shape[2] != occlusion_map.shape[2] or out.shape[3] != occlusion_map.shape[3]:
occlusion_map = F.interpolate(occlusion_map, size=out.shape[2:], mode='bilinear')
out = out * occlusion_map
output_dict["deformed"] = self.deform_input(source_image, deformation)
# render part
render_result = self.Render_model(feature=out)
output_dict['render'] = render_result['mini_pred']
output_dict['point_pred'] = render_result['point_pred']
out = torch.cat((out, render_result['render']), dim=1)
# out = self.merge_conv(out)
# Decoding part
out = self.decoder(out)
output_dict["prediction"] = out
return output_dict
|