Spaces:
Build error
Build error
Commit
·
9a7dea4
1
Parent(s):
232330c
Create dalle_model.py
Browse files- dalle_model.py +114 -0
dalle_model.py
ADDED
|
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
from functools import partial
|
| 4 |
+
|
| 5 |
+
import jax
|
| 6 |
+
import numpy as np
|
| 7 |
+
import jax.numpy as jnp
|
| 8 |
+
from PIL import Image
|
| 9 |
+
|
| 10 |
+
from dalle_mini import DalleBart, DalleBartProcessor
|
| 11 |
+
from vqgan_jax.modeling_flax_vqgan import VQModel
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
from flax.jax_utils import replicate
|
| 15 |
+
from flax.training.common_utils import shard_prng_key
|
| 16 |
+
|
| 17 |
+
import wandb
|
| 18 |
+
|
| 19 |
+
from consts import COND_SCALE, DALLE_COMMIT_ID, DALLE_MODEL_MEGA_FULL, DALLE_MODEL_MEGA, DALLE_MODEL_MINI, GEN_TOP_K, GEN_TOP_P, TEMPERATURE, VQGAN_COMMIT_ID, VQGAN_REPO, ModelSize
|
| 20 |
+
|
| 21 |
+
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform" # https://github.com/saharmor/dalle-playground/issues/14#issuecomment-1147849318
|
| 22 |
+
os.environ["WANDB_SILENT"] = "true"
|
| 23 |
+
wandb.init(anonymous="must")
|
| 24 |
+
|
| 25 |
+
# model inference
|
| 26 |
+
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(3, 4, 5, 6, 7))
|
| 27 |
+
def p_generate(
|
| 28 |
+
tokenized_prompt, key, params, top_k, top_p, temperature, condition_scale, model
|
| 29 |
+
):
|
| 30 |
+
return model.generate(
|
| 31 |
+
**tokenized_prompt,
|
| 32 |
+
prng_key=key,
|
| 33 |
+
params=params,
|
| 34 |
+
top_k=top_k,
|
| 35 |
+
top_p=top_p,
|
| 36 |
+
temperature=temperature,
|
| 37 |
+
condition_scale=condition_scale,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# decode images
|
| 42 |
+
@partial(jax.pmap, axis_name="batch", static_broadcasted_argnums=(0))
|
| 43 |
+
def p_decode(vqgan, indices, params):
|
| 44 |
+
return vqgan.decode_code(indices, params=params)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class DalleModel:
|
| 48 |
+
def __init__(self, model_version: ModelSize) -> None:
|
| 49 |
+
if model_version == ModelSize.MEGA_FULL:
|
| 50 |
+
dalle_model = DALLE_MODEL_MEGA_FULL
|
| 51 |
+
dtype = jnp.float16
|
| 52 |
+
elif model_version == ModelSize.MEGA:
|
| 53 |
+
dalle_model = DALLE_MODEL_MEGA
|
| 54 |
+
dtype = jnp.float16
|
| 55 |
+
else:
|
| 56 |
+
dalle_model = DALLE_MODEL_MINI
|
| 57 |
+
dtype = jnp.float32
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Load dalle-mini
|
| 61 |
+
self.model, params = DalleBart.from_pretrained(
|
| 62 |
+
dalle_model, revision=DALLE_COMMIT_ID, dtype=dtype, _do_init=False
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Load VQGAN
|
| 66 |
+
self.vqgan, vqgan_params = VQModel.from_pretrained(
|
| 67 |
+
VQGAN_REPO, revision=VQGAN_COMMIT_ID, _do_init=False
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.params = replicate(params)
|
| 71 |
+
self.vqgan_params = replicate(vqgan_params)
|
| 72 |
+
|
| 73 |
+
self.processor = DalleBartProcessor.from_pretrained(dalle_model, revision=DALLE_COMMIT_ID)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def tokenize_prompt(self, prompt: str):
|
| 77 |
+
tokenized_prompt = self.processor([prompt])
|
| 78 |
+
return replicate(tokenized_prompt)
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def generate_images(self, prompt: str, num_predictions: int):
|
| 82 |
+
tokenized_prompt = self.tokenize_prompt(prompt)
|
| 83 |
+
|
| 84 |
+
# create a random key
|
| 85 |
+
seed = random.randint(0, 2 ** 32 - 1)
|
| 86 |
+
key = jax.random.PRNGKey(seed)
|
| 87 |
+
|
| 88 |
+
# generate images
|
| 89 |
+
images = []
|
| 90 |
+
for i in range(max(num_predictions // jax.device_count(), 1)):
|
| 91 |
+
# get a new key
|
| 92 |
+
key, subkey = jax.random.split(key)
|
| 93 |
+
|
| 94 |
+
encoded_images = p_generate(
|
| 95 |
+
tokenized_prompt,
|
| 96 |
+
shard_prng_key(subkey),
|
| 97 |
+
self.params,
|
| 98 |
+
GEN_TOP_K,
|
| 99 |
+
GEN_TOP_P,
|
| 100 |
+
TEMPERATURE,
|
| 101 |
+
COND_SCALE,
|
| 102 |
+
self.model
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# remove BOS
|
| 106 |
+
encoded_images = encoded_images.sequences[..., 1:]
|
| 107 |
+
|
| 108 |
+
# decode images
|
| 109 |
+
decoded_images = p_decode(self.vqgan, encoded_images, self.vqgan_params)
|
| 110 |
+
decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))
|
| 111 |
+
for img in decoded_images:
|
| 112 |
+
images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))
|
| 113 |
+
|
| 114 |
+
return images
|