Spaces:
Sleeping
Sleeping
add triplet_margin_loss
Browse files- app.py +6 -0
- requirements.txt +3 -0
- triplet_margin_loss.py +106 -0
app.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils import launch_gradio_widget
|
3 |
+
|
4 |
+
|
5 |
+
module = evaluate.load("triplet_margin_loss")
|
6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: fix github to release
|
2 |
+
git+https://github.com/huggingface/evaluate.git@505123230059f9605da8951880eddc9d1fbf4278
|
3 |
+
datasets~=2.0
|
triplet_margin_loss.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""Triplet Margin Loss metric."""
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
import evaluate
|
18 |
+
|
19 |
+
|
20 |
+
_DESCRIPTION = """
|
21 |
+
Triplet margin loss is a loss function that measures a relative similarity between the samples.
|
22 |
+
A triplet is comprised of reference input 'anchor(a)', matching input 'positive examples(p)' and non-matching input 'negative examples(n)'.
|
23 |
+
The loss function for each triplet is given by:
|
24 |
+
L(a, p, n) = max{d(a,p) - d(a,n) + margin, 0}
|
25 |
+
where d(x, y) is the 2nd order (Euclidean) pairwise distance between x and y
|
26 |
+
"""
|
27 |
+
|
28 |
+
|
29 |
+
_KWARGS_DESCRIPTION = """
|
30 |
+
Args:
|
31 |
+
anchor (`list` of `float`): Reference inputs.
|
32 |
+
positive (`list` of `float`): Matching inputs.
|
33 |
+
negative (`list` of `float`): Non-matching inputs.
|
34 |
+
margin (`float`): Margin, default:`1.0`
|
35 |
+
|
36 |
+
Returns:
|
37 |
+
triplet_margin_loss (`float`): Total loss.
|
38 |
+
Examples:
|
39 |
+
Example 1-A simple example
|
40 |
+
>>> triplet_margin_loss = evaluate.load("triplet_margin_loss")
|
41 |
+
>>> results = triplet_margin_loss.compute(
|
42 |
+
anchor=[-0.4765, 1.7133, 1.3971, -1.0121, 0.0732],
|
43 |
+
positive=[0.9218, 0.6305, 0.3381, 0.1412, 0.2607],
|
44 |
+
negative=[0.1971, 0.7246, 0.6729, 0.0941, 0.1011])
|
45 |
+
>>> print(results)
|
46 |
+
{'triplet_margin_loss': 1.59}
|
47 |
+
Example 2-The same as Example 1, except with `margin` set to `2.0`.
|
48 |
+
>>> triplet_margin_loss = evaluate.load("triplet_margin_loss")
|
49 |
+
>>> results = triplet_margin_loss.compute(
|
50 |
+
anchor=[-0.4765, 1.7133, 1.3971, -1.0121, 0.0732],
|
51 |
+
positive=[0.9218, 0.6305, 0.3381, 0.1412, 0.2607],
|
52 |
+
negative=[0.1971, 0.7246, 0.6729, 0.0941, 0.1011]),
|
53 |
+
margin=2.0)
|
54 |
+
>>> print(results)
|
55 |
+
{'triplet_margin_loss': 2.59}
|
56 |
+
"""
|
57 |
+
|
58 |
+
|
59 |
+
_CITATION = """
|
60 |
+
@article{scikit-learn,
|
61 |
+
title={Scikit-learn: Machine Learning in {P}ython},
|
62 |
+
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
|
63 |
+
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
|
64 |
+
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
|
65 |
+
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
|
66 |
+
journal={Journal of Machine Learning Research},
|
67 |
+
volume={12},
|
68 |
+
pages={2825--2830},
|
69 |
+
year={2011}
|
70 |
+
}
|
71 |
+
@article{schultz2003learning,
|
72 |
+
title={Learning a distance metric from relative comparisons},
|
73 |
+
author={Schultz, Matthew and Joachims, Thorsten},
|
74 |
+
journal={Advances in neural information processing systems},
|
75 |
+
volume={16},
|
76 |
+
year={2003}
|
77 |
+
}
|
78 |
+
"""
|
79 |
+
|
80 |
+
|
81 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
82 |
+
class TripletMarginLoss(evaluate.EvaluationModule):
|
83 |
+
def _info(self):
|
84 |
+
return evaluate.EvaluationModuleInfo(
|
85 |
+
description=_DESCRIPTION,
|
86 |
+
citation=_CITATION,
|
87 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
88 |
+
features=datasets.Features(
|
89 |
+
{
|
90 |
+
"anchor": datasets.Sequence(datasets.Value("float", id="references")),
|
91 |
+
"positive": datasets.Sequence(datasets.Value("float"), id="sequence"),
|
92 |
+
"negative": datasets.Sequence(datasets.Value("float"), id="sequence"),
|
93 |
+
"margin": datasets.Value("float")
|
94 |
+
}
|
95 |
+
),
|
96 |
+
reference_urls=["https://proceedings.neurips.cc/paper/2003/hash/d3b1fb02964aa64e257f9f26a31f72cf-Abstract.html"],
|
97 |
+
)
|
98 |
+
|
99 |
+
def _compute(self, anchor, positive, negative, margin=1.0):
|
100 |
+
d_a_p = sum((anchor - positive)**2)
|
101 |
+
d_a_n = sum((anchor - negative)**2)
|
102 |
+
return {
|
103 |
+
"accuracy": float(
|
104 |
+
max(d_a_p - d_a_n + margin, 0)
|
105 |
+
)
|
106 |
+
}
|