File size: 6,837 Bytes
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
170b7fb
 
 
 
 
69a49c7
 
 
bb57065
69a49c7
 
 
c61143a
69a49c7
 
 
 
 
 
 
d807757
7298e06
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706f12e
c134bb3
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19bfb12
69a49c7
 
 
 
 
 
170b7fb
ddbbef2
 
170b7fb
d807757
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470ecd
8454d6c
edd432b
 
8454d6c
 
775e425
84b49fc
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84b49fc
69a49c7
 
32a97af
3741399
69a49c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98f6ed0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
from pathlib import Path
import argparse
import soundfile as sf
import torch
import io
import argparse
from matcha.hifigan.config import v1
from matcha.hifigan.denoiser import Denoiser
from matcha.hifigan.env import AttrDict
from matcha.hifigan.models import Generator as HiFiGAN
from matcha.models.matcha_tts import MatchaTTS
from matcha.text import sequence_to_text, text_to_sequence
from matcha.utils.utils import intersperse
import gradio as gr
import requests
from datetime import datetime





def download_file(url, save_path):
    response = requests.get(url)
    print(f'---Loading from URL: {url} ---')
    with open(save_path, 'wb') as file:
        file.write(response.content)

url_checkpoint = 'https://github.com/simonlobgromov/AkylAI_Matcha_Checkpoint/releases/download/LiveSpeech2025-v.1.0/checkpoint_epoch.399.ckpt' #'https://github.com/simonlobgromov/AkylAI_Matcha_Checkpoint/releases/download/Akyl-AI-TTS-v2/checkpoint_epoch.669.ckpt'
save_checkpoint_path = './checkpoints/checkpoint.ckpt'
url_generator = 'https://github.com/simonlobgromov/AkylAI_Matcha_HiFiGan/releases/download/Generator/generator_v1'
save_generator_path = './checkpoints/generator'

download_file(url_checkpoint, save_checkpoint_path)
download_file(url_generator, save_generator_path)



def load_matcha( checkpoint_path, device):
    model = MatchaTTS.load_from_checkpoint(checkpoint_path, map_location=device)
    _ = model.eval()
    return model

def load_hifigan(checkpoint_path, device):
    h = AttrDict(v1)
    hifigan = HiFiGAN(h).to(device)
    hifigan.load_state_dict(torch.load(checkpoint_path, map_location=device)["generator"])
    _ = hifigan.eval()
    hifigan.remove_weight_norm()
    return hifigan

def load_vocoder(checkpoint_path, device):
    vocoder = None
    vocoder = load_hifigan(checkpoint_path, device)
    denoiser = Denoiser(vocoder, mode="zeros")
    return vocoder, denoiser

def process_text(i: int, text: str, device: torch.device):
    print(f"[{i}] - Input text: {text}")
    x = torch.tensor(
        intersperse(text_to_sequence(text, ["kyrgyz_cleaners"]), 0),
        dtype=torch.long,
        device=device,
    )[None]
    x_lengths = torch.tensor([x.shape[-1]], dtype=torch.long, device=device)
    x_phones = sequence_to_text(x.squeeze(0).tolist())
    print(f"[{i}] - Phonetised text: {x_phones}")
    return {"x_orig": text, "x": x, "x_lengths": x_lengths, "x_phones": x_phones.replace('_q_ˌ_o_l_o_n_q_ˈ_ɑ_', '_q_ˌ_o_l_ˈ_o_n_q_ɑ_')}

def to_waveform(mel, vocoder, denoiser=None):
    audio = vocoder(mel).clamp(-1, 1)
    if denoiser is not None:
        audio = denoiser(audio.squeeze(), strength=0.00025).cpu().squeeze()
    return audio.cpu().squeeze()

@torch.inference_mode()
def process_text_gradio(text):
    output = process_text(1, text, device)
    return output["x_phones"][1::2], output["x"], output["x_lengths"]

@torch.inference_mode()
def synthesise_mel(text, text_length, n_timesteps, temperature, length_scale, spk=-1):
    spk = torch.tensor([spk], device=device, dtype=torch.long) if spk >= 0 else None
    output = model.synthesise(
        text,
        text_length,
        n_timesteps=n_timesteps,
        temperature=temperature,
        spks=spk,
        length_scale=length_scale,
    )
    output["waveform"] = to_waveform(output["mel"], vocoder, denoiser)
    return output["waveform"].numpy()

def get_inference(text, n_timesteps=20, mel_temp = 0.667, length_scale=0.8, spk=-1):
    phones, text, text_lengths = process_text_gradio(text)
    print(type(synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)))
    return synthesise_mel(text, text_lengths, n_timesteps, mel_temp, length_scale, spk)


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = './checkpoints/checkpoint.ckpt'
vocoder_path = './checkpoints/generator'
model = load_matcha(model_path, device) 
vocoder, denoiser = load_vocoder(vocoder_path, device) 

def gen_tts(text, speaking_rate):
    try:
        output = 22050, get_inference(text = text, length_scale = speaking_rate)
        return output
    except Exception as e:
        pass

default_text = "Баарыңарга салам, менин атым Акылай."

css = """
        #share-btn-container {
            display: flex;
            padding-left: 0.5rem !important;
            padding-right: 0.5rem !important;
            background-color: #000000;
            justify-content: center;
            align-items: center;
            border-radius: 9999px !important; 
            width: 13rem;
            margin-top: 10px;
            margin-left: auto;
            flex: unset !important;
        }
        #share-btn {
            all: initial;
            color: #ffffff;
            font-weight: 600;
            cursor: pointer;
            font-family: 'IBM Plex Sans', sans-serif;
            margin-left: 0.5rem !important;
            padding-top: 0.25rem !important;
            padding-bottom: 0.25rem !important;
            right:0;
        }
        #share-btn * {
            all: unset !important;
        }
        #share-btn-container div:nth-child(-n+2){
            width: auto !important;
            min-height: 0px !important;
        }
        #share-btn-container .wrap {
            display: none !important;
        }
        }
        img {
            display: block;
            margin: 0 auto;
            width: 132px !important;
            height: 132px !important;
        }
        """
with gr.Blocks(css=css) as block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
                "
              >
                <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
                  Akyl-AI TTS
                </h1>
              </div>
            </div>
        """

    )
    with gr.Row():
        image_path = "./photo_2024-04-07_15-59-52.png"
        gr.Image(image_path, label=None, width=132, height=132, show_label=False)
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
            speaking_rate = gr.Slider(label='Speaking rate', minimum=0.5, maximum=1, step=0.05, value=0.8, interactive=True, show_label=True, elem_id="speaking_rate")


            run_button = gr.Button("Generate Audio", variant="primary")
        with gr.Column():
            audio_out = gr.Audio(label="AkylAi-TTS", type="numpy", elem_id="audio_out")

    inputs = [input_text, speaking_rate]
    outputs = [audio_out]
    run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)


block.queue()
block.launch()