first commit
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
# Set FastAPI backend URL
|
6 |
+
API_URL = "http://127.0.0.1:8000" # Change this if deployed elsewhere
|
7 |
+
|
8 |
+
# Streamlit UI
|
9 |
+
st.set_page_config(page_title="Loan Risk Analysis Dashboard", layout="wide")
|
10 |
+
|
11 |
+
st.title("π Loan Risk Analysis Dashboard")
|
12 |
+
|
13 |
+
# Sidebar for Navigation
|
14 |
+
st.sidebar.header("Navigation")
|
15 |
+
page = st.sidebar.radio(
|
16 |
+
"Go to",
|
17 |
+
[
|
18 |
+
"Loan Status Distribution",
|
19 |
+
"Payment Timeline Analysis",
|
20 |
+
"Principal Amount Patterns",
|
21 |
+
"Credit History Impact",
|
22 |
+
"Customer Profile Analysis",
|
23 |
+
"Loan Intent Analysis",
|
24 |
+
"Collection Effectiveness",
|
25 |
+
"Risk Score Development"
|
26 |
+
],
|
27 |
+
)
|
28 |
+
|
29 |
+
# Function to fetch data from FastAPI backend
|
30 |
+
def fetch_data(endpoint):
|
31 |
+
try:
|
32 |
+
response = requests.get(f"{API_URL}/{endpoint}")
|
33 |
+
if response.status_code == 200:
|
34 |
+
return response.json()
|
35 |
+
else:
|
36 |
+
st.error(f"Error fetching data: {response.json()['detail']}")
|
37 |
+
return None
|
38 |
+
except requests.exceptions.RequestException as e:
|
39 |
+
st.error(f"API request failed: {e}")
|
40 |
+
return None
|
41 |
+
|
42 |
+
# Loan Status Distribution
|
43 |
+
if page == "Loan Status Distribution":
|
44 |
+
st.subheader("π Loan Status Distribution")
|
45 |
+
data = fetch_data("loan_status_distribution")
|
46 |
+
if data:
|
47 |
+
st.write(data)
|
48 |
+
st.bar_chart(pd.DataFrame([data], index=["Loan Status"]).T)
|
49 |
+
|
50 |
+
# Payment Timeline Analysis
|
51 |
+
elif page == "Payment Timeline Analysis":
|
52 |
+
st.subheader("π Payment Timeline Analysis")
|
53 |
+
data = fetch_data("payment_timeline_analysis")
|
54 |
+
if data:
|
55 |
+
st.write(data)
|
56 |
+
st.bar_chart(pd.DataFrame(data["average_loan_amount_by_status"], index=["Loan Amount"]).T)
|
57 |
+
|
58 |
+
# Principal Amount Patterns
|
59 |
+
elif page == "Principal Amount Patterns":
|
60 |
+
st.subheader("π Principal Amount Patterns")
|
61 |
+
data = fetch_data("principal_amount_patterns")
|
62 |
+
if data:
|
63 |
+
df = pd.DataFrame(data)
|
64 |
+
st.write(df)
|
65 |
+
st.bar_chart(df.set_index("loan_status")["count"])
|
66 |
+
|
67 |
+
# Credit History Impact
|
68 |
+
elif page == "Credit History Impact":
|
69 |
+
st.subheader("π Credit History Impact")
|
70 |
+
data = fetch_data("credit_history_impact")
|
71 |
+
if data:
|
72 |
+
st.write(data)
|
73 |
+
|
74 |
+
# Customer Profile Analysis
|
75 |
+
elif page == "Customer Profile Analysis":
|
76 |
+
st.subheader("π Customer Profile Analysis")
|
77 |
+
data = fetch_data("customer_profile_analysis")
|
78 |
+
if data:
|
79 |
+
df = pd.DataFrame(data["customer_profile_analysis"])
|
80 |
+
st.write(df)
|
81 |
+
st.bar_chart(df.set_index("person_age")["success_rate"])
|
82 |
+
|
83 |
+
# Loan Intent Analysis
|
84 |
+
elif page == "Loan Intent Analysis":
|
85 |
+
st.subheader("π Loan Intent Analysis")
|
86 |
+
data = fetch_data("loan_intent_analysis")
|
87 |
+
if data:
|
88 |
+
st.write(data)
|
89 |
+
|
90 |
+
# Collection Effectiveness
|
91 |
+
elif page == "Collection Effectiveness":
|
92 |
+
st.subheader("π Collection Effectiveness")
|
93 |
+
data = fetch_data("collection_effectiveness")
|
94 |
+
if data:
|
95 |
+
st.write(data)
|
96 |
+
|
97 |
+
# Risk Score Development
|
98 |
+
elif page == "Risk Score Development":
|
99 |
+
st.subheader("π Risk Score Development")
|
100 |
+
data = fetch_data("risk_score_development")
|
101 |
+
if data:
|
102 |
+
st.write(data)
|
103 |
+
st.bar_chart(pd.DataFrame(data, index=["Risk Score"]).T)
|
104 |
+
|
105 |
+
# Run Streamlit
|
106 |
+
st.sidebar.info("π’ Select an option from the navigation to analyze loan risk insights.")
|