from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr model_name = "microsoft/Phi-4-mini-instruct" # Load model & tokenizer with optimizations tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto") # Create a pipeline for text generation (faster inference) chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200) def chatbot_response(user_input): response = chatbot(user_input)[0]["generated_text"] return response # Gradio UI iface = gr.Interface( fn=chatbot_response, inputs="text", outputs="text", title="Ethical AI Chatbot", description="A chatbot for ethical AI guidance." ) iface.launch()