Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,20 @@
|
|
1 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
2 |
import gradio as gr
|
3 |
|
4 |
model_name = "microsoft/Phi-4-mini-instruct"
|
5 |
-
|
|
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
7 |
|
8 |
def chatbot_response(user_input):
|
9 |
-
|
10 |
-
output = model.generate(**inputs, max_length=200)
|
11 |
-
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
12 |
return response
|
13 |
|
|
|
14 |
iface = gr.Interface(
|
15 |
fn=chatbot_response,
|
16 |
inputs="text",
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
2 |
import gradio as gr
|
3 |
|
4 |
model_name = "microsoft/Phi-4-mini-instruct"
|
5 |
+
|
6 |
+
# Load model & tokenizer with optimizations
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
9 |
+
|
10 |
+
# Create a pipeline for text generation (faster inference)
|
11 |
+
chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200)
|
12 |
|
13 |
def chatbot_response(user_input):
|
14 |
+
response = chatbot(user_input)[0]["generated_text"]
|
|
|
|
|
15 |
return response
|
16 |
|
17 |
+
# Gradio UI
|
18 |
iface = gr.Interface(
|
19 |
fn=chatbot_response,
|
20 |
inputs="text",
|