tfshubh commited on
Commit
2d5e542
·
verified ·
1 Parent(s): 294e850

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -5
app.py CHANGED
@@ -1,16 +1,20 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
  import gradio as gr
3
 
4
  model_name = "microsoft/Phi-4-mini-instruct"
5
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
6
  tokenizer = AutoTokenizer.from_pretrained(model_name)
 
 
 
 
7
 
8
  def chatbot_response(user_input):
9
- inputs = tokenizer(user_input, return_tensors="pt")
10
- output = model.generate(**inputs, max_length=200)
11
- response = tokenizer.decode(output[0], skip_special_tokens=True)
12
  return response
13
 
 
14
  iface = gr.Interface(
15
  fn=chatbot_response,
16
  inputs="text",
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
2
  import gradio as gr
3
 
4
  model_name = "microsoft/Phi-4-mini-instruct"
5
+
6
+ # Load model & tokenizer with optimizations
7
  tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
9
+
10
+ # Create a pipeline for text generation (faster inference)
11
+ chatbot = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=200)
12
 
13
  def chatbot_response(user_input):
14
+ response = chatbot(user_input)[0]["generated_text"]
 
 
15
  return response
16
 
17
+ # Gradio UI
18
  iface = gr.Interface(
19
  fn=chatbot_response,
20
  inputs="text",