Spaces:
Sleeping
Sleeping
fix(model): Replace Farsi model with a public one
Browse files
app.py
CHANGED
@@ -2,46 +2,67 @@
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
#
|
6 |
-
#
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
#
|
14 |
-
|
|
|
|
|
|
|
15 |
"""
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
-
if text:
|
25 |
-
# The pipeline returns a list of dictionaries.
|
26 |
-
# e.g., [{'label': 'POSITIVE', 'score': 0.999}]
|
27 |
-
result = sentiment_pipeline(text)[0]
|
28 |
-
label = result['label']
|
29 |
-
score = result['score']
|
30 |
-
|
31 |
-
# Format the output for better readability
|
32 |
-
return f"Sentiment: {label} (Score: {score:.4f})"
|
33 |
-
else:
|
34 |
return "Please enter some text to analyze."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
title="Simple Sentiment Analyzer",
|
42 |
-
description="Enter any English text to find out if its sentiment is POSITIVE or NEGATIVE. Powered by Hugging Face Transformers.",
|
43 |
-
allow_flagging="never" # Disables the flagging feature
|
44 |
-
)
|
45 |
|
46 |
# Launch the web application
|
47 |
if __name__ == "__main__":
|
|
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
+
# --- Configuration ---
|
6 |
+
# Define the models we want to offer in our application.
|
7 |
+
# We are now using a confirmed, publicly available Persian model.
|
8 |
+
MODELS = {
|
9 |
+
"English": "distilbert-base-uncased-finetuned-sst-2-english",
|
10 |
+
"Persian (Farsi)": "m3hrdadfi/albert-fa-base-v2-sentiment-binary",
|
11 |
+
}
|
12 |
+
|
13 |
+
# --- State and Caching ---
|
14 |
+
# Create a dictionary to cache the loaded pipelines.
|
15 |
+
pipeline_cache = {}
|
16 |
+
|
17 |
+
def get_pipeline(model_name):
|
18 |
"""
|
19 |
+
Loads a sentiment-analysis pipeline for the given model name.
|
20 |
+
Uses a cache to avoid reloading models that are already in memory.
|
21 |
+
"""
|
22 |
+
if model_name not in pipeline_cache:
|
23 |
+
print(f"Loading pipeline for model: {model_name}...")
|
24 |
+
pipeline_cache[model_name] = pipeline("sentiment-analysis", model=model_name)
|
25 |
+
print("Pipeline loaded successfully.")
|
26 |
+
return pipeline_cache[model_name]
|
27 |
+
|
28 |
+
# --- Core Logic ---
|
29 |
+
def analyze_sentiment(text, model_choice):
|
30 |
+
"""
|
31 |
+
Analyzes the sentiment of a given text using the selected model.
|
32 |
"""
|
33 |
+
if not text:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
return "Please enter some text to analyze."
|
35 |
+
|
36 |
+
model_name = MODELS[model_choice]
|
37 |
+
sentiment_pipeline = get_pipeline(model_name)
|
38 |
+
|
39 |
+
result = sentiment_pipeline(text)[0]
|
40 |
+
label = result['label']
|
41 |
+
score = result['score']
|
42 |
+
|
43 |
+
return f"Sentiment: {label} (Score: {score:.4f})"
|
44 |
+
|
45 |
+
# --- Gradio Interface ---
|
46 |
+
with gr.Blocks() as iface:
|
47 |
+
gr.Markdown("# Multi-Lingual Sentiment Analyzer")
|
48 |
+
gr.Markdown("Select a language, enter some text, and see the sentiment analysis. The first time you select a language, the model will take a moment to load.")
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
model_selector = gr.Dropdown(
|
52 |
+
choices=list(MODELS.keys()),
|
53 |
+
value="English",
|
54 |
+
label="Select Language Model"
|
55 |
+
)
|
56 |
+
output_text = gr.Textbox(label="Result", interactive=False)
|
57 |
+
|
58 |
+
input_text = gr.Textbox(lines=5, placeholder="Enter text here...")
|
59 |
+
submit_button = gr.Button("Analyze Sentiment")
|
60 |
|
61 |
+
submit_button.click(
|
62 |
+
fn=analyze_sentiment,
|
63 |
+
inputs=[input_text, model_selector],
|
64 |
+
outputs=output_text
|
65 |
+
)
|
|
|
|
|
|
|
|
|
66 |
|
67 |
# Launch the web application
|
68 |
if __name__ == "__main__":
|