Update dashboard/app.py
Browse files- dashboard/app.py +20 -52
dashboard/app.py
CHANGED
|
@@ -80,66 +80,34 @@ def run(from_results_dir, datasource, port):
|
|
| 80 |
# data[metric] = data[metric].apply(lambda x: f"{x:.2f}")
|
| 81 |
data = data.rename(
|
| 82 |
columns=column_mappings)
|
| 83 |
-
|
| 84 |
-
# This is the raw data with correct dtypes for sorting
|
| 85 |
-
raw_data_for_sorting = data.copy()
|
| 86 |
|
| 87 |
-
#
|
| 88 |
-
#
|
|
|
|
|
|
|
| 89 |
numeric_cols_to_ensure = [
|
| 90 |
-
'ITL P90 (ms)', 'TTFT P90 (ms)', 'E2E P90 (ms)',
|
| 91 |
'Throughput (tokens/s)', 'QPS'
|
| 92 |
]
|
| 93 |
|
| 94 |
for col in numeric_cols_to_ensure:
|
| 95 |
-
if col in
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
# Formatter for display purposes
|
| 107 |
-
formatter = {
|
| 108 |
-
'ITL P90 (ms)': "{:.2f}",
|
| 109 |
-
'TTFT P90 (ms)': "{:.2f}",
|
| 110 |
-
'E2E P90 (ms)': "{:.2f}",
|
| 111 |
-
'Throughput (tokens/s)': "{:.2f}",
|
| 112 |
-
'QPS': "{:.0f}"
|
| 113 |
}
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
val = row[col_name]
|
| 121 |
-
if col_name in formatter:
|
| 122 |
-
try:
|
| 123 |
-
display_row.append(formatter[col_name].format(val))
|
| 124 |
-
except (ValueError, TypeError): # Fallback for any unexpected non-numeric in formatted columns
|
| 125 |
-
display_row.append(str(val))
|
| 126 |
-
else:
|
| 127 |
-
display_row.append(str(val)) # Default string conversion for other columns
|
| 128 |
-
display_values_list.append(display_row)
|
| 129 |
-
|
| 130 |
-
# Create a styling array (list of lists for CSS). Empty strings if no specific CSS.
|
| 131 |
-
# Corrected the extra parenthesis at the end of this line
|
| 132 |
-
styling_array = [["" for _ in headers] for _ in range(len(raw_data_for_sorting))]
|
| 133 |
-
|
| 134 |
-
return {
|
| 135 |
-
# Convert the DataFrame (with corrected numeric dtypes) to a list of lists for the "data" field
|
| 136 |
-
"data": raw_data_for_sorting.values.tolist(),
|
| 137 |
-
"headers": headers,
|
| 138 |
-
"metadata": {
|
| 139 |
-
"display_value": display_values_list,
|
| 140 |
-
"styling": styling_array, # Optional: for cell-specific CSS
|
| 141 |
-
},
|
| 142 |
-
}
|
| 143 |
|
| 144 |
def load_bench_results(source) -> pd.DataFrame:
|
| 145 |
data = pd.read_parquet(source)
|
|
|
|
| 80 |
# data[metric] = data[metric].apply(lambda x: f"{x:.2f}")
|
| 81 |
data = data.rename(
|
| 82 |
columns=column_mappings)
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
+
# uncomment the following line if you want to return the raw DataFrame without formatting
|
| 85 |
+
# return data
|
| 86 |
+
|
| 87 |
+
# Ensure numeric columns are properly typed for sorting
|
| 88 |
numeric_cols_to_ensure = [
|
| 89 |
+
'ITL P90 (ms)', 'TTFT P90 (ms)', 'E2E P90 (ms)',
|
| 90 |
'Throughput (tokens/s)', 'QPS'
|
| 91 |
]
|
| 92 |
|
| 93 |
for col in numeric_cols_to_ensure:
|
| 94 |
+
if col in data.columns:
|
| 95 |
+
data[col] = pd.to_numeric(data[col], errors='coerce')
|
| 96 |
+
|
| 97 |
+
# Round numeric columns to reduce decimal places while maintaining sorting
|
| 98 |
+
rounding_rules = {
|
| 99 |
+
'ITL P90 (ms)': 2,
|
| 100 |
+
'TTFT P90 (ms)': 2,
|
| 101 |
+
'E2E P90 (ms)': 2,
|
| 102 |
+
'Throughput (tokens/s)': 2,
|
| 103 |
+
'QPS': 0 # Round to integers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
}
|
| 105 |
|
| 106 |
+
for col, decimals in rounding_rules.items():
|
| 107 |
+
if col in data.columns:
|
| 108 |
+
data[col] = data[col].round(decimals)
|
| 109 |
+
|
| 110 |
+
return data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
def load_bench_results(source) -> pd.DataFrame:
|
| 113 |
data = pd.read_parquet(source)
|