Spaces:
Sleeping
Sleeping
Create mymodule.py
Browse files- mymodule.py +62 -0
mymodule.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#调用大模型
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel, get_peft_config
|
4 |
+
import json
|
5 |
+
import torch
|
6 |
+
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
+
|
9 |
+
# 加载预训练模型
|
10 |
+
model_name = "Qwen/Qwen2-0.5B"
|
11 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# 加载适配器
|
14 |
+
adapter_path1 = "test2023h5/wyw2xdw"
|
15 |
+
adapter_path2 = "test2023h5/xdw2wyw"
|
16 |
+
|
17 |
+
# 加载适配器
|
18 |
+
base_model.load_adapter(adapter_path1, adapter_name='adapter1')
|
19 |
+
base_model.load_adapter(adapter_path2, adapter_name='adapter2')
|
20 |
+
|
21 |
+
base_model.set_adapter("adapter1")
|
22 |
+
#base_model.set_adapter("adapter2")
|
23 |
+
|
24 |
+
model = base_model.to(device)
|
25 |
+
|
26 |
+
# 加载 tokenizer
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
+
|
29 |
+
print("model loading done")
|
30 |
+
|
31 |
+
def format_instruction(task, text):
|
32 |
+
string = f"""### 指令:
|
33 |
+
{task}
|
34 |
+
|
35 |
+
### 输入:
|
36 |
+
{text}
|
37 |
+
|
38 |
+
### 输出:
|
39 |
+
"""
|
40 |
+
return string
|
41 |
+
|
42 |
+
def generate_response(task, text):
|
43 |
+
input_text = format_instruction(task, text)
|
44 |
+
encoding = tokenizer(input_text, return_tensors="pt").to(device)
|
45 |
+
with torch.no_grad(): # 禁用梯度计算
|
46 |
+
outputs = model.generate(**encoding, max_new_tokens=50)
|
47 |
+
generated_ids = outputs[:, encoding.input_ids.shape[1]:]
|
48 |
+
generated_texts = tokenizer.batch_decode(generated_ids, skip_special_tokens=False)
|
49 |
+
return generated_texts[0].split('\n')[0]
|
50 |
+
|
51 |
+
def predict(text, method):
|
52 |
+
if method == 0:
|
53 |
+
prompt = ["翻译成现代文", text]
|
54 |
+
base_model.set_adapter("adapter1")
|
55 |
+
else:
|
56 |
+
prompt = ["翻译成古文", text]
|
57 |
+
base_model.set_adapter("adapter2")
|
58 |
+
|
59 |
+
print("debug", text)
|
60 |
+
response = generate_response(prompt[0], prompt[1])
|
61 |
+
print("debug2", response)
|
62 |
+
return response
|