Spaces:
Sleeping
Sleeping
| from marker.convert import convert_single_pdf | |
| from marker.models import load_all_models | |
| import tempfile | |
| from indexify_extractor_sdk import Content, Extractor, Feature | |
| from pydantic import BaseModel | |
| from typing import Optional, Literal, List, Union | |
| class MarkdownExtractorConfig(BaseModel): | |
| max_pages: Optional[int] = None | |
| langs: Optional[str] = None | |
| batch_multiplier: Optional[int] = 2 | |
| class MarkdownExtractor(Extractor): | |
| name = "tensorlake/marker" | |
| description = "Markdown Extractor for PDFs" | |
| system_dependencies = [] | |
| input_mime_types = ["application/pdf"] | |
| def __init__(self): | |
| super(MarkdownExtractor, self).__init__() | |
| self.model_lst = load_all_models() | |
| def extract(self, content: Content, params: MarkdownExtractorConfig) -> List[Union[Feature, Content]]: | |
| contents = [] | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as inputtmpfile: | |
| inputtmpfile.write(content.data) | |
| inputtmpfile.flush() | |
| full_text, images, out_meta = convert_single_pdf(inputtmpfile.name, self.model_lst, max_pages=params.max_pages, langs=params.langs, batch_multiplier=params.batch_multiplier) | |
| feature = Feature.metadata(value=out_meta, name="text") | |
| contents.append(Content.from_text(full_text, features=[feature])) | |
| return contents |