Spaces:
Build error
Build error
from typing import Dict, List, Any | |
import requests | |
from bs4 import BeautifulSoup | |
from duckduckgo_search import DDGS | |
from transformers import pipeline | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
import time | |
import json | |
import os | |
from urllib.parse import urlparse | |
class ModelManager: | |
"""Manages different AI models for specific tasks""" | |
def __init__(self): | |
self.device = "cpu" | |
self.models = {} | |
self.load_models() | |
def load_models(self): | |
# Use smaller models for CPU deployment | |
self.models['summarizer'] = pipeline( | |
"summarization", | |
model="facebook/bart-base", | |
device=self.device | |
) | |
self.models['embeddings'] = HuggingFaceEmbeddings( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
model_kwargs={"device": self.device} | |
) | |
class ContentProcessor: | |
"""Processes and analyzes different types of content""" | |
def __init__(self): | |
self.model_manager = ModelManager() | |
def process_content(self, content: str) -> Dict: | |
"""Process content and generate insights""" | |
try: | |
# Generate summary | |
summary = self.model_manager.models['summarizer']( | |
content[:1024], | |
max_length=100, | |
min_length=30, | |
do_sample=False | |
)[0]['summary_text'] | |
return { | |
'summary': summary, | |
'content': content | |
} | |
except Exception as e: | |
return { | |
'summary': f"Error processing content: {str(e)}", | |
'content': content | |
} | |
class WebSearchEngine: | |
"""Main search engine class""" | |
def __init__(self): | |
self.processor = ContentProcessor() | |
self.session = requests.Session() | |
self.request_delay = 1.0 | |
self.last_request_time = 0 | |
self.ddgs = DDGS() | |
def is_valid_url(self, url: str) -> bool: | |
"""Check if URL is valid for crawling""" | |
try: | |
parsed = urlparse(url) | |
return bool(parsed.netloc and parsed.scheme) | |
except: | |
return False | |
def get_metadata(self, soup: BeautifulSoup) -> Dict: | |
"""Extract metadata from page""" | |
title = soup.title.string if soup.title else "No title" | |
description = "" | |
if soup.find("meta", attrs={"name": "description"}): | |
description = soup.find("meta", attrs={"name": "description"}).get("content", "") | |
return { | |
'title': title, | |
'description': description | |
} | |
def process_url(self, url: str) -> Dict: | |
"""Process a single URL""" | |
if not self.is_valid_url(url): | |
return {'error': f"Invalid URL: {url}"} | |
try: | |
# Rate limiting | |
current_time = time.time() | |
time_since_last = current_time - self.last_request_time | |
if time_since_last < self.request_delay: | |
time.sleep(self.request_delay - time_since_last) | |
response = self.session.get(url, timeout=10) | |
self.last_request_time = time.time() | |
if response.status_code != 200: | |
return {'error': f"Failed to fetch URL: {url}, status code: {response.status_code}"} | |
soup = BeautifulSoup(response.text, 'lxml') | |
# Extract text content | |
for script in soup(["script", "style"]): | |
script.decompose() | |
text = soup.get_text() | |
lines = (line.strip() for line in text.splitlines()) | |
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) | |
content = ' '.join(chunk for chunk in chunks if chunk) | |
# Get metadata | |
metadata = self.get_metadata(soup) | |
# Process content | |
processed = self.processor.process_content(content) | |
return { | |
'url': url, | |
'title': metadata['title'], | |
'description': metadata['description'], | |
'summary': processed['summary'], | |
'content': processed['content'] | |
} | |
except Exception as e: | |
return {'error': f"Error processing {url}: {str(e)}"} | |
def search(self, query: str, max_results: int = 5) -> Dict: | |
"""Perform search and process results""" | |
try: | |
# Search using DuckDuckGo | |
search_results = list(self.ddgs.text(query, max_results=max_results)) | |
results = [] | |
for result in search_results: | |
if 'link' in result: | |
processed = self.process_url(result['link']) | |
if 'error' not in processed: | |
results.append(processed) | |
# Generate insights from results | |
all_content = " ".join([r['summary'] for r in results if 'summary' in r]) | |
return { | |
'results': results, | |
'insights': all_content[:1000] if all_content else "No insights available.", | |
'follow_up_questions': [ | |
f"What are the key differences between {query} and related topics?", | |
f"Can you explain {query} in simple terms?", | |
f"What are the latest developments in {query}?" | |
] | |
} | |
except Exception as e: | |
return {'error': f"Search failed: {str(e)}"} | |
# Main search function | |
def search(query: str, max_results: int = 5) -> Dict: | |
"""Main search function""" | |
engine = WebSearchEngine() | |
return engine.search(query, max_results) | |