old_tok / test_net.py
tennant's picture
upload
af7c0ce
import argparse
import os.path as osp
import itertools
from omegaconf import OmegaConf
from paintmind.engine.util import instantiate_from_config
from paintmind.utils.device_utils import configure_compute_backend
def parse_args():
"""Parse command line arguments."""
parser = argparse.ArgumentParser("Test a model")
# Model and testing configuration
parser.add_argument('--model', type=str, nargs='+', default=[None], help="Path to model directory")
parser.add_argument('--step', type=int, nargs='+', default=[250000], help="Step number to test")
parser.add_argument('--cfg', type=str, default=None, help="Path to config file")
parser.add_argument('--dataset', type=str, default='imagenet', help="Dataset to use")
# Legacy parameter (preserved for backward compatibility)
parser.add_argument('--cfg_value', type=float, nargs='+', default=[None],
help='Legacy parameter for GPT classifier-free guidance scale')
parser.add_argument('--ae_cfg', type=float, nargs='+', default=[None],
help="Autoencoder classifier-free guidance scale")
parser.add_argument('--diff_cfg', type=float, nargs='+', default=[None],
help="Diffusion classifier-free guidance scale")
parser.add_argument('--cfg_schedule', type=str, nargs='+', default=[None],
help="CFG schedule type (e.g., constant, linear)")
parser.add_argument('--diff_cfg_schedule', type=str, nargs='+', default=[None],
help="Diffusion CFG schedule type (e.g., constant, inv_linear)")
parser.add_argument('--test_num_slots', type=int, nargs='+', default=[None],
help="Number of slots to use for inference")
parser.add_argument('--temperature', type=float, nargs='+', default=[None],
help="Temperature for sampling")
return parser.parse_args()
def load_config(model_path, cfg_path=None):
"""Load configuration from file or model directory."""
if cfg_path is not None and osp.exists(cfg_path):
config_path = cfg_path
elif model_path and osp.exists(osp.join(model_path, 'config.yaml')):
config_path = osp.join(model_path, 'config.yaml')
else:
raise ValueError(f"No config file found at {model_path} or {cfg_path}")
return OmegaConf.load(config_path)
def setup_checkpoint_path(model_path, step, config):
"""Set up the checkpoint path based on model and step."""
if model_path:
ckpt_path = osp.join(model_path, 'models', f'step{step}')
if not osp.exists(ckpt_path):
print(f"Skipping non-existent checkpoint: {ckpt_path}")
return None
if hasattr(config.trainer.params, 'model'):
config.trainer.params.model.params.ckpt_path = ckpt_path
else:
config.trainer.params.gpt_model.params.ckpt_path = ckpt_path
else:
result_folder = config.trainer.params.result_folder
ckpt_path = osp.join(result_folder, 'models', f'step{step}')
if hasattr(config.trainer.params, 'model'):
config.trainer.params.model.params.ckpt_path = ckpt_path
else:
config.trainer.params.gpt_model.params.ckpt_path = ckpt_path
return ckpt_path
def setup_test_config(config, use_coco=False):
"""Set up common test configuration parameters."""
config.trainer.params.test_dataset = config.trainer.params.dataset
if not use_coco:
config.trainer.params.test_dataset.params.split = 'val'
else:
config.trainer.params.test_dataset.target = 'paintmind.utils.datasets.COCO'
config.trainer.params.test_dataset.params.root = './dataset/coco'
config.trainer.params.test_dataset.params.split = 'val2017'
config.trainer.params.test_only = True
config.trainer.params.compile = False
config.trainer.params.eval_fid = True
config.trainer.params.fid_stats = 'fid_stats/adm_in256_stats.npz'
if hasattr(config.trainer.params, 'model'):
config.trainer.params.model.params.num_sampling_steps = '250'
else:
config.trainer.params.ae_model.params.num_sampling_steps = '250'
def apply_cfg_params(config, param_dict):
"""Apply CFG-related parameters to the config."""
# Apply each parameter if it's not None
if param_dict.get('cfg_value') is not None:
config.trainer.params.cfg = param_dict['cfg_value']
print(f"Setting cfg to {param_dict['cfg_value']}")
if param_dict.get('ae_cfg') is not None:
config.trainer.params.ae_cfg = param_dict['ae_cfg']
print(f"Setting ae_cfg to {param_dict['ae_cfg']}")
if param_dict.get('diff_cfg') is not None:
config.trainer.params.diff_cfg = param_dict['diff_cfg']
print(f"Setting diff_cfg to {param_dict['diff_cfg']}")
if param_dict.get('cfg_schedule') is not None:
config.trainer.params.cfg_schedule = param_dict['cfg_schedule']
print(f"Setting cfg_schedule to {param_dict['cfg_schedule']}")
if param_dict.get('diff_cfg_schedule') is not None:
config.trainer.params.diff_cfg_schedule = param_dict['diff_cfg_schedule']
print(f"Setting diff_cfg_schedule to {param_dict['diff_cfg_schedule']}")
if param_dict.get('test_num_slots') is not None:
config.trainer.params.test_num_slots = param_dict['test_num_slots']
print(f"Setting test_num_slots to {param_dict['test_num_slots']}")
if param_dict.get('temperature') is not None:
config.trainer.params.temperature = param_dict['temperature']
print(f"Setting temperature to {param_dict['temperature']}")
def run_test(config):
"""Instantiate trainer and run test."""
trainer = instantiate_from_config(config.trainer)
trainer.train()
def generate_param_combinations(args):
"""Generate all combinations of parameters from the provided arguments."""
# Create parameter grid for all combinations
param_grid = {
'cfg_value': [None] if args.cfg_value == [None] else args.cfg_value,
'ae_cfg': [None] if args.ae_cfg == [None] else args.ae_cfg,
'diff_cfg': [None] if args.diff_cfg == [None] else args.diff_cfg,
'cfg_schedule': [None] if args.cfg_schedule == [None] else args.cfg_schedule,
'diff_cfg_schedule': [None] if args.diff_cfg_schedule == [None] else args.diff_cfg_schedule,
'test_num_slots': [None] if args.test_num_slots == [None] else args.test_num_slots,
'temperature': [None] if args.temperature == [None] else args.temperature
}
# Get all parameter names that have non-None values
active_params = [k for k, v in param_grid.items() if v != [None]]
if not active_params:
# If no parameters are specified, yield a dict with all None values
yield {k: None for k in param_grid.keys()}
return
# Generate all combinations of active parameters
active_values = [param_grid[k] for k in active_params]
for combination in itertools.product(*active_values):
param_dict = {k: None for k in param_grid.keys()} # Start with all None
for i, param_name in enumerate(active_params):
param_dict[param_name] = combination[i]
yield param_dict
def test(args):
"""Main test function that processes arguments and runs tests."""
# Iterate through all model and step combinations
for model in args.model:
for step in args.step:
print(f"Testing model: {model} at step: {step}")
# Load configuration
config = load_config(model, args.cfg)
# Setup checkpoint path
ckpt_path = setup_checkpoint_path(model, step, config)
if ckpt_path is None:
continue
use_coco = args.dataset == 'coco' or args.dataset == 'COCO'
# Setup test configuration
setup_test_config(config, use_coco)
# Generate and apply all parameter combinations
for param_dict in generate_param_combinations(args):
# Create a copy of the config for each parameter combination
current_config = OmegaConf.create(OmegaConf.to_container(config, resolve=True))
# Print parameter combination
param_str = ", ".join([f"{k}={v}" for k, v in param_dict.items() if v is not None])
print(f"Testing with parameters: {param_str}")
# Apply parameters and run test
apply_cfg_params(current_config, param_dict)
run_test(current_config)
def main():
"""Main entry point for the script."""
args = parse_args()
configure_compute_backend()
test(args)
if __name__ == "__main__":
main()