# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import copy import json import os from typing import Any, Dict, Optional import torch import torch.nn as nn from diffusers.models import UNet2DConditionModel from diffusers.models.attention_processor import Attention from diffusers.models.transformers.transformer_2d import BasicTransformerBlock from einops import rearrange def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output class Basic2p5DTransformerBlock(torch.nn.Module): def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None: super().__init__() self.transformer = transformer self.layer_name = layer_name self.use_ma = use_ma self.use_ra = use_ra # multiview attn if self.use_ma: self.attn_multiview = Attention( query_dim=self.dim, heads=self.num_attention_heads, dim_head=self.attention_head_dim, dropout=self.dropout, bias=self.attention_bias, cross_attention_dim=None, upcast_attention=self.attn1.upcast_attention, out_bias=True, ) # ref attn if self.use_ra: self.attn_refview = Attention( query_dim=self.dim, heads=self.num_attention_heads, dim_head=self.attention_head_dim, dropout=self.dropout, bias=self.attention_bias, cross_attention_dim=None, upcast_attention=self.attn1.upcast_attention, out_bias=True, ) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: return getattr(self.transformer, name) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1) mode = cross_attention_kwargs.pop('mode', None) mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0) ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0) condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None) if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 Reference Attention if 'w' in mode: condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C if 'r' in mode and self.use_ra: condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1, 1) # B N L C condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c') attn_output = self.attn_refview( norm_hidden_states, encoder_hidden_states=condition_embed, attention_mask=None, **cross_attention_kwargs ) ref_scale_timing = ref_scale if isinstance(ref_scale, torch.Tensor): ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1) for _ in range(attn_output.ndim - 1): ref_scale_timing = ref_scale_timing.unsqueeze(-1) hidden_states = ref_scale_timing * attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.3 Multiview Attention if num_in_batch > 1 and self.use_ma: multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) attn_output = self.attn_multiview( multivew_hidden_states, encoder_hidden_states=multivew_hidden_states, **cross_attention_kwargs ) attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch) hidden_states = mva_scale * attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states class UNet2p5DConditionModel(torch.nn.Module): def __init__(self, unet: UNet2DConditionModel) -> None: super().__init__() self.unet = unet self.use_ma = True self.use_ra = True self.use_camera_embedding = True self.use_dual_stream = True if self.use_dual_stream: self.unet_dual = copy.deepcopy(unet) self.init_attention(self.unet_dual) self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra) self.init_condition() self.init_camera_embedding() @staticmethod def from_pretrained(pretrained_model_name_or_path, **kwargs): torch_dtype = kwargs.pop('torch_dtype', torch.float32) config_path = os.path.join(pretrained_model_name_or_path, 'config.json') unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin') with open(config_path, 'r', encoding='utf-8') as file: config = json.load(file) unet = UNet2DConditionModel(**config) unet = UNet2p5DConditionModel(unet) unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True) unet.load_state_dict(unet_ckpt, strict=True) unet = unet.to(torch_dtype) return unet def init_condition(self): self.unet.conv_in = torch.nn.Conv2d( 12, self.unet.conv_in.out_channels, kernel_size=self.unet.conv_in.kernel_size, stride=self.unet.conv_in.stride, padding=self.unet.conv_in.padding, dilation=self.unet.conv_in.dilation, groups=self.unet.conv_in.groups, bias=self.unet.conv_in.bias is not None) self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024)) self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024)) def init_camera_embedding(self): if self.use_camera_embedding: time_embed_dim = 1280 self.max_num_ref_image = 5 self.max_num_gen_image = 12 * 3 + 4 * 2 self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim) def init_attention(self, unet, use_ma=False, use_ra=False): for down_block_i, down_block in enumerate(unet.down_blocks): if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention: for attn_i, attn in enumerate(down_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention: for attn_i, attn in enumerate(unet.mid_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}', use_ma, use_ra) for up_block_i, up_block in enumerate(unet.up_blocks): if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention: for attn_i, attn in enumerate(up_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}', use_ma, use_ra) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: return getattr(self.unet, name) def forward( self, sample, timestep, encoder_hidden_states, *args, down_intrablock_additional_residuals=None, down_block_res_samples=None, mid_block_res_sample=None, **cached_condition, ): B, N_gen, _, H, W = sample.shape assert H == W if self.use_camera_embedding: camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)') else: camera_info_gen = None sample = [sample] if 'normal_imgs' in cached_condition: sample.append(cached_condition["normal_imgs"]) if 'position_imgs' in cached_condition: sample.append(cached_condition["position_imgs"]) sample = torch.cat(sample, dim=2) sample = rearrange(sample, 'b n c h w -> (b n) c h w') encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1) encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c') if self.use_ra: if 'condition_embed_dict' in cached_condition: condition_embed_dict = cached_condition['condition_embed_dict'] else: condition_embed_dict = {} ref_latents = cached_condition['ref_latents'] N_ref = ref_latents.shape[1] if self.use_camera_embedding: camera_info_ref = cached_condition['camera_info_ref'] camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)') else: camera_info_ref = None ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w') encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1) encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c') noisy_ref_latents = ref_latents timestep_ref = 0 if self.use_dual_stream: unet_ref = self.unet_dual else: unet_ref = self.unet unet_ref( noisy_ref_latents, timestep_ref, encoder_hidden_states=encoder_hidden_states_ref, class_labels=camera_info_ref, # **kwargs return_dict=False, cross_attention_kwargs={ 'mode': 'w', 'num_in_batch': N_ref, 'condition_embed_dict': condition_embed_dict}, ) cached_condition['condition_embed_dict'] = condition_embed_dict else: condition_embed_dict = None mva_scale = cached_condition.get('mva_scale', 1.0) ref_scale = cached_condition.get('ref_scale', 1.0) return self.unet( sample, timestep, encoder_hidden_states_gen, *args, class_labels=camera_info_gen, down_intrablock_additional_residuals=[ sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals ] if down_intrablock_additional_residuals is not None else None, down_block_additional_residuals=[ sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples ] if down_block_res_samples is not None else None, mid_block_additional_residual=( mid_block_res_sample.to(dtype=self.unet.dtype) if mid_block_res_sample is not None else None ), return_dict=False, cross_attention_kwargs={ 'mode': 'r', 'num_in_batch': N_gen, 'condition_embed_dict': condition_embed_dict, 'mva_scale': mva_scale, 'ref_scale': ref_scale, }, )