# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import torch import torch.nn as nn from torchvision import transforms from transformers import ( CLIPVisionModelWithProjection, CLIPVisionConfig, Dinov2Model, Dinov2Config, ) class ImageEncoder(nn.Module): def __init__( self, version=None, config=None, use_cls_token=True, image_size=224, **kwargs, ): super().__init__() if config is None: self.model = self.MODEL_CLASS.from_pretrained(version) else: self.model = self.MODEL_CLASS(self.MODEL_CONFIG_CLASS.from_dict(config)) self.model.eval() self.model.requires_grad_(False) self.use_cls_token = use_cls_token self.size = image_size // 14 self.num_patches = (image_size // 14) ** 2 if self.use_cls_token: self.num_patches += 1 self.transform = transforms.Compose( [ transforms.Resize(image_size, transforms.InterpolationMode.BILINEAR, antialias=True), transforms.CenterCrop(image_size), transforms.Normalize( mean=self.mean, std=self.std, ), ] ) def forward(self, image, mask=None, value_range=(-1, 1)): if value_range is not None: low, high = value_range image = (image - low) / (high - low) image = image.to(self.model.device, dtype=self.model.dtype) inputs = self.transform(image) outputs = self.model(inputs) last_hidden_state = outputs.last_hidden_state if not self.use_cls_token: last_hidden_state = last_hidden_state[:, 1:, :] return last_hidden_state def unconditional_embedding(self, batch_size): device = next(self.model.parameters()).device dtype = next(self.model.parameters()).dtype zero = torch.zeros( batch_size, self.num_patches, self.model.config.hidden_size, device=device, dtype=dtype, ) return zero class CLIPImageEncoder(ImageEncoder): MODEL_CLASS = CLIPVisionModelWithProjection MODEL_CONFIG_CLASS = CLIPVisionConfig mean = [0.48145466, 0.4578275, 0.40821073] std = [0.26862954, 0.26130258, 0.27577711] class DinoImageEncoder(ImageEncoder): MODEL_CLASS = Dinov2Model MODEL_CONFIG_CLASS = Dinov2Config mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] def build_image_encoder(config): if config['type'] == 'CLIPImageEncoder': return CLIPImageEncoder(**config['kwargs']) elif config['type'] == 'DinoImageEncoder': return DinoImageEncoder(**config['kwargs']) else: raise ValueError(f'Unknown image encoder type: {config["type"]}') class DualImageEncoder(nn.Module): def __init__( self, main_image_encoder, additional_image_encoder, ): super().__init__() self.main_image_encoder = build_image_encoder(main_image_encoder) self.additional_image_encoder = build_image_encoder(additional_image_encoder) def forward(self, image, mask=None): outputs = { 'main': self.main_image_encoder(image, mask=mask), 'additional': self.additional_image_encoder(image, mask=mask), } return outputs def unconditional_embedding(self, batch_size): outputs = { 'main': self.main_image_encoder.unconditional_embedding(batch_size), 'additional': self.additional_image_encoder.unconditional_embedding(batch_size), } return outputs class SingleImageEncoder(nn.Module): def __init__( self, main_image_encoder, ): super().__init__() self.main_image_encoder = build_image_encoder(main_image_encoder) def forward(self, image, mask=None): outputs = { 'main': self.main_image_encoder(image, mask=mask), } return outputs def unconditional_embedding(self, batch_size): outputs = { 'main': self.main_image_encoder.unconditional_embedding(batch_size), } return outputs