Huiwenshi commited on
Commit
e9b09d8
·
verified ·
1 Parent(s): 5b2716e

Upload ./hy3dgen/texgen/custom_rasterizer/lib/custom_rasterizer_kernel/rasterizer_gpu.cu with huggingface_hub

Browse files
hy3dgen/texgen/custom_rasterizer/lib/custom_rasterizer_kernel/rasterizer_gpu.cu ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include "rasterizer.h"
2
+
3
+ __device__ void rasterizeTriangleGPU(int idx, float* vt0, float* vt1, float* vt2, int width, int height, INT64* zbuffer, float* d, float occlusion_truncation) {
4
+ float x_min = std::min(vt0[0], std::min(vt1[0],vt2[0]));
5
+ float x_max = std::max(vt0[0], std::max(vt1[0],vt2[0]));
6
+ float y_min = std::min(vt0[1], std::min(vt1[1],vt2[1]));
7
+ float y_max = std::max(vt0[1], std::max(vt1[1],vt2[1]));
8
+
9
+ for (int px = x_min; px < x_max + 1; ++px) {
10
+ if (px < 0 || px >= width)
11
+ continue;
12
+ for (int py = y_min; py < y_max + 1; ++py) {
13
+ if (py < 0 || py >= height)
14
+ continue;
15
+ float vt[2] = {px + 0.5f, py + 0.5f};
16
+ float baryCentricCoordinate[3];
17
+ calculateBarycentricCoordinate(vt0, vt1, vt2, vt, baryCentricCoordinate);
18
+ if (isBarycentricCoordInBounds(baryCentricCoordinate)) {
19
+ int pixel = py * width + px;
20
+ if (zbuffer == 0) {
21
+ atomicExch(&zbuffer[pixel], (INT64)(idx + 1));
22
+ continue;
23
+ }
24
+ float depth = baryCentricCoordinate[0] * vt0[2] + baryCentricCoordinate[1] * vt1[2] + baryCentricCoordinate[2] * vt2[2];
25
+ float depth_thres = 0;
26
+ if (d) {
27
+ depth_thres = d[pixel] * 0.49999f + 0.5f + occlusion_truncation;
28
+ }
29
+
30
+ int z_quantize = depth * (2<<17);
31
+ INT64 token = (INT64)z_quantize * MAXINT + (INT64)(idx + 1);
32
+ if (depth < depth_thres)
33
+ continue;
34
+ atomicMin(&zbuffer[pixel], token);
35
+ }
36
+ }
37
+ }
38
+ }
39
+
40
+ __global__ void barycentricFromImgcoordGPU(float* V, int* F, int* findices, INT64* zbuffer, int width, int height, int num_vertices, int num_faces,
41
+ float* barycentric_map)
42
+ {
43
+ int pix = blockIdx.x * blockDim.x + threadIdx.x;
44
+ if (pix >= width * height)
45
+ return;
46
+ INT64 f = zbuffer[pix] % MAXINT;
47
+ if (f == (MAXINT-1)) {
48
+ findices[pix] = 0;
49
+ barycentric_map[pix * 3] = 0;
50
+ barycentric_map[pix * 3 + 1] = 0;
51
+ barycentric_map[pix * 3 + 2] = 0;
52
+ return;
53
+ }
54
+ findices[pix] = f;
55
+ f -= 1;
56
+ float barycentric[3] = {0, 0, 0};
57
+ if (f >= 0) {
58
+ float vt[2] = {float(pix % width) + 0.5f, float(pix / width) + 0.5f};
59
+ float* vt0_ptr = V + (F[f * 3] * 4);
60
+ float* vt1_ptr = V + (F[f * 3 + 1] * 4);
61
+ float* vt2_ptr = V + (F[f * 3 + 2] * 4);
62
+
63
+ float vt0[2] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f};
64
+ float vt1[2] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f};
65
+ float vt2[2] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f};
66
+
67
+ calculateBarycentricCoordinate(vt0, vt1, vt2, vt, barycentric);
68
+
69
+ barycentric[0] = barycentric[0] / vt0_ptr[3];
70
+ barycentric[1] = barycentric[1] / vt1_ptr[3];
71
+ barycentric[2] = barycentric[2] / vt2_ptr[3];
72
+ float w = 1.0f / (barycentric[0] + barycentric[1] + barycentric[2]);
73
+ barycentric[0] *= w;
74
+ barycentric[1] *= w;
75
+ barycentric[2] *= w;
76
+
77
+ }
78
+ barycentric_map[pix * 3] = barycentric[0];
79
+ barycentric_map[pix * 3 + 1] = barycentric[1];
80
+ barycentric_map[pix * 3 + 2] = barycentric[2];
81
+ }
82
+
83
+ __global__ void rasterizeImagecoordsKernelGPU(float* V, int* F, float* d, INT64* zbuffer, float occlusion_trunc, int width, int height, int num_vertices, int num_faces)
84
+ {
85
+ int f = blockIdx.x * blockDim.x + threadIdx.x;
86
+ if (f >= num_faces)
87
+ return;
88
+
89
+ float* vt0_ptr = V + (F[f * 3] * 4);
90
+ float* vt1_ptr = V + (F[f * 3 + 1] * 4);
91
+ float* vt2_ptr = V + (F[f * 3 + 2] * 4);
92
+
93
+ float vt0[3] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f, vt0_ptr[2] / vt0_ptr[3] * 0.49999f + 0.5f};
94
+ float vt1[3] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f, vt1_ptr[2] / vt1_ptr[3] * 0.49999f + 0.5f};
95
+ float vt2[3] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f, vt2_ptr[2] / vt2_ptr[3] * 0.49999f + 0.5f};
96
+
97
+ rasterizeTriangleGPU(f, vt0, vt1, vt2, width, height, zbuffer, d, occlusion_trunc);
98
+ }
99
+
100
+ std::vector<torch::Tensor> rasterize_image_gpu(torch::Tensor V, torch::Tensor F, torch::Tensor D,
101
+ int width, int height, float occlusion_truncation, int use_depth_prior)
102
+ {
103
+ int device_id = V.get_device();
104
+ cudaSetDevice(device_id);
105
+ int num_faces = F.size(0);
106
+ int num_vertices = V.size(0);
107
+ auto options = torch::TensorOptions().dtype(torch::kInt32).device(torch::kCUDA, device_id).requires_grad(false);
108
+ auto INT64_options = torch::TensorOptions().dtype(torch::kInt64).device(torch::kCUDA, device_id).requires_grad(false);
109
+ auto findices = torch::zeros({height, width}, options);
110
+ INT64 maxint = (INT64)MAXINT * (INT64)MAXINT + (MAXINT - 1);
111
+ auto z_min = torch::ones({height, width}, INT64_options) * (long)maxint;
112
+
113
+ if (!use_depth_prior) {
114
+ rasterizeImagecoordsKernelGPU<<<(num_faces+255)/256,256,0,at::cuda::getCurrentCUDAStream()>>>(V.data_ptr<float>(), F.data_ptr<int>(), 0,
115
+ (INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces);
116
+ } else {
117
+ rasterizeImagecoordsKernelGPU<<<(num_faces+255)/256,256,0,at::cuda::getCurrentCUDAStream()>>>(V.data_ptr<float>(), F.data_ptr<int>(), D.data_ptr<float>(),
118
+ (INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces);
119
+ }
120
+
121
+ auto float_options = torch::TensorOptions().dtype(torch::kFloat32).device(torch::kCUDA, device_id).requires_grad(false);
122
+ auto barycentric = torch::zeros({height, width, 3}, float_options);
123
+ barycentricFromImgcoordGPU<<<(width * height + 255)/256, 256>>>(V.data_ptr<float>(), F.data_ptr<int>(),
124
+ findices.data_ptr<int>(), (INT64*)z_min.data_ptr<long>(), width, height, num_vertices, num_faces, barycentric.data_ptr<float>());
125
+
126
+ return {findices, barycentric};
127
+ }