Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import cv2 | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import trimesh | |
from PIL import Image | |
from .camera_utils import ( | |
transform_pos, | |
get_mv_matrix, | |
get_orthographic_projection_matrix, | |
get_perspective_projection_matrix, | |
) | |
from .mesh_processor import meshVerticeInpaint | |
from .mesh_utils import load_mesh, save_mesh | |
def stride_from_shape(shape): | |
stride = [1] | |
for x in reversed(shape[1:]): | |
stride.append(stride[-1] * x) | |
return list(reversed(stride)) | |
def scatter_add_nd_with_count(input, count, indices, values, weights=None): | |
# input: [..., C], D dimension + C channel | |
# count: [..., 1], D dimension | |
# indices: [N, D], long | |
# values: [N, C] | |
D = indices.shape[-1] | |
C = input.shape[-1] | |
size = input.shape[:-1] | |
stride = stride_from_shape(size) | |
assert len(size) == D | |
input = input.view(-1, C) # [HW, C] | |
count = count.view(-1, 1) | |
flatten_indices = (indices * torch.tensor(stride, | |
dtype=torch.long, device=indices.device)).sum(-1) # [N] | |
if weights is None: | |
weights = torch.ones_like(values[..., :1]) | |
input.scatter_add_(0, flatten_indices.unsqueeze(1).repeat(1, C), values) | |
count.scatter_add_(0, flatten_indices.unsqueeze(1), weights) | |
return input.view(*size, C), count.view(*size, 1) | |
def linear_grid_put_2d(H, W, coords, values, return_count=False): | |
# coords: [N, 2], float in [0, 1] | |
# values: [N, C] | |
C = values.shape[-1] | |
indices = coords * torch.tensor( | |
[H - 1, W - 1], dtype=torch.float32, device=coords.device | |
) | |
indices_00 = indices.floor().long() # [N, 2] | |
indices_00[:, 0].clamp_(0, H - 2) | |
indices_00[:, 1].clamp_(0, W - 2) | |
indices_01 = indices_00 + torch.tensor( | |
[0, 1], dtype=torch.long, device=indices.device | |
) | |
indices_10 = indices_00 + torch.tensor( | |
[1, 0], dtype=torch.long, device=indices.device | |
) | |
indices_11 = indices_00 + torch.tensor( | |
[1, 1], dtype=torch.long, device=indices.device | |
) | |
h = indices[..., 0] - indices_00[..., 0].float() | |
w = indices[..., 1] - indices_00[..., 1].float() | |
w_00 = (1 - h) * (1 - w) | |
w_01 = (1 - h) * w | |
w_10 = h * (1 - w) | |
w_11 = h * w | |
result = torch.zeros(H, W, C, device=values.device, | |
dtype=values.dtype) # [H, W, C] | |
count = torch.zeros(H, W, 1, device=values.device, | |
dtype=values.dtype) # [H, W, 1] | |
weights = torch.ones_like(values[..., :1]) # [N, 1] | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_00, values * w_00.unsqueeze(1), weights * w_00.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_01, values * w_01.unsqueeze(1), weights * w_01.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_10, values * w_10.unsqueeze(1), weights * w_10.unsqueeze(1)) | |
result, count = scatter_add_nd_with_count( | |
result, count, indices_11, values * w_11.unsqueeze(1), weights * w_11.unsqueeze(1)) | |
if return_count: | |
return result, count | |
mask = (count.squeeze(-1) > 0) | |
result[mask] = result[mask] / count[mask].repeat(1, C) | |
return result | |
class MeshRender(): | |
def __init__( | |
self, | |
camera_distance=1.45, camera_type='orth', | |
default_resolution=1024, texture_size=1024, | |
use_antialias=True, max_mip_level=None, filter_mode='linear', | |
bake_mode='linear', raster_mode='cr', device='cuda'): | |
self.device = device | |
self.set_default_render_resolution(default_resolution) | |
self.set_default_texture_resolution(texture_size) | |
self.camera_distance = camera_distance | |
self.use_antialias = use_antialias | |
self.max_mip_level = max_mip_level | |
self.filter_mode = filter_mode | |
self.bake_angle_thres = 75 | |
self.bake_unreliable_kernel_size = int( | |
(2 / 512) * max(self.default_resolution[0], self.default_resolution[1])) | |
self.bake_mode = bake_mode | |
self.raster_mode = raster_mode | |
if self.raster_mode == 'cr': | |
import custom_rasterizer as cr | |
self.raster = cr | |
else: | |
raise f'No raster named {self.raster_mode}' | |
if camera_type == 'orth': | |
self.ortho_scale = 1.2 | |
self.camera_proj_mat = get_orthographic_projection_matrix( | |
left=-self.ortho_scale * 0.5, right=self.ortho_scale * 0.5, | |
bottom=-self.ortho_scale * 0.5, top=self.ortho_scale * 0.5, | |
near=0.1, far=100 | |
) | |
elif camera_type == 'perspective': | |
self.camera_proj_mat = get_perspective_projection_matrix( | |
49.13, self.default_resolution[1] / self.default_resolution[0], | |
0.01, 100.0 | |
) | |
else: | |
raise f'No camera type {camera_type}' | |
def raster_rasterize(self, pos, tri, resolution, ranges=None, grad_db=True): | |
if self.raster_mode == 'cr': | |
rast_out_db = None | |
if pos.dim() == 2: | |
pos = pos.unsqueeze(0) | |
findices, barycentric = self.raster.rasterize(pos, tri, resolution) | |
rast_out = torch.cat((barycentric, findices.unsqueeze(-1)), dim=-1) | |
rast_out = rast_out.unsqueeze(0) | |
else: | |
raise f'No raster named {self.raster_mode}' | |
return rast_out, rast_out_db | |
def raster_interpolate(self, uv, rast_out, uv_idx, rast_db=None, diff_attrs=None): | |
if self.raster_mode == 'cr': | |
textd = None | |
barycentric = rast_out[0, ..., :-1] | |
findices = rast_out[0, ..., -1] | |
if uv.dim() == 2: | |
uv = uv.unsqueeze(0) | |
textc = self.raster.interpolate(uv, findices, barycentric, uv_idx) | |
else: | |
raise f'No raster named {self.raster_mode}' | |
return textc, textd | |
def raster_texture(self, tex, uv, uv_da=None, mip_level_bias=None, mip=None, filter_mode='auto', | |
boundary_mode='wrap', max_mip_level=None): | |
if self.raster_mode == 'cr': | |
raise f'Texture is not implemented in cr' | |
else: | |
raise f'No raster named {self.raster_mode}' | |
return color | |
def raster_antialias(self, color, rast, pos, tri, topology_hash=None, pos_gradient_boost=1.0): | |
if self.raster_mode == 'cr': | |
# Antialias has not been supported yet | |
color = color | |
else: | |
raise f'No raster named {self.raster_mode}' | |
return color | |
def load_mesh( | |
self, | |
mesh, | |
scale_factor=1.15, | |
auto_center=True, | |
): | |
vtx_pos, pos_idx, vtx_uv, uv_idx, texture_data = load_mesh(mesh) | |
self.mesh_copy = mesh | |
self.set_mesh(vtx_pos, pos_idx, | |
vtx_uv=vtx_uv, uv_idx=uv_idx, | |
scale_factor=scale_factor, auto_center=auto_center | |
) | |
if texture_data is not None: | |
self.set_texture(texture_data) | |
def save_mesh(self): | |
texture_data = self.get_texture() | |
texture_data = Image.fromarray((texture_data * 255).astype(np.uint8)) | |
return save_mesh(self.mesh_copy, texture_data) | |
def set_mesh( | |
self, | |
vtx_pos, pos_idx, | |
vtx_uv=None, uv_idx=None, | |
scale_factor=1.15, auto_center=True | |
): | |
self.vtx_pos = torch.from_numpy(vtx_pos).to(self.device).float() | |
self.pos_idx = torch.from_numpy(pos_idx).to(self.device).to(torch.int) | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv = torch.from_numpy(vtx_uv).to(self.device).float() | |
self.uv_idx = torch.from_numpy(uv_idx).to(self.device).to(torch.int) | |
else: | |
self.vtx_uv = None | |
self.uv_idx = None | |
self.vtx_pos[:, [0, 1]] = -self.vtx_pos[:, [0, 1]] | |
self.vtx_pos[:, [1, 2]] = self.vtx_pos[:, [2, 1]] | |
if (vtx_uv is not None) and (uv_idx is not None): | |
self.vtx_uv[:, 1] = 1.0 - self.vtx_uv[:, 1] | |
if auto_center: | |
max_bb = (self.vtx_pos - 0).max(0)[0] | |
min_bb = (self.vtx_pos - 0).min(0)[0] | |
center = (max_bb + min_bb) / 2 | |
scale = torch.norm(self.vtx_pos - center, dim=1).max() * 2.0 | |
self.vtx_pos = (self.vtx_pos - center) * \ | |
(scale_factor / float(scale)) | |
self.scale_factor = scale_factor | |
def set_texture(self, tex): | |
if isinstance(tex, np.ndarray): | |
tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
elif isinstance(tex, torch.Tensor): | |
tex = tex.cpu().numpy() | |
tex = Image.fromarray((tex * 255).astype(np.uint8)) | |
tex = tex.resize(self.texture_size).convert('RGB') | |
tex = np.array(tex) / 255.0 | |
self.tex = torch.from_numpy(tex).to(self.device) | |
self.tex = self.tex.float() | |
def set_default_render_resolution(self, default_resolution): | |
if isinstance(default_resolution, int): | |
default_resolution = (default_resolution, default_resolution) | |
self.default_resolution = default_resolution | |
def set_default_texture_resolution(self, texture_size): | |
if isinstance(texture_size, int): | |
texture_size = (texture_size, texture_size) | |
self.texture_size = texture_size | |
def get_mesh(self): | |
vtx_pos = self.vtx_pos.cpu().numpy() | |
pos_idx = self.pos_idx.cpu().numpy() | |
vtx_uv = self.vtx_uv.cpu().numpy() | |
uv_idx = self.uv_idx.cpu().numpy() | |
# 坐标变换的逆变换 | |
vtx_pos[:, [1, 2]] = vtx_pos[:, [2, 1]] | |
vtx_pos[:, [0, 1]] = -vtx_pos[:, [0, 1]] | |
vtx_uv[:, 1] = 1.0 - vtx_uv[:, 1] | |
return vtx_pos, pos_idx, vtx_uv, uv_idx | |
def get_texture(self): | |
return self.tex.cpu().numpy() | |
def to(self, device): | |
self.device = device | |
for attr_name in dir(self): | |
attr_value = getattr(self, attr_name) | |
if isinstance(attr_value, torch.Tensor): | |
setattr(self, attr_name, attr_value.to(self.device)) | |
def color_rgb_to_srgb(self, image): | |
if isinstance(image, Image.Image): | |
image_rgb = torch.tesnor( | |
np.array(image) / | |
255.0).float().to( | |
self.device) | |
elif isinstance(image, np.ndarray): | |
image_rgb = torch.tensor(image).float() | |
else: | |
image_rgb = image.to(self.device) | |
image_srgb = torch.where( | |
image_rgb <= 0.0031308, | |
12.92 * image_rgb, | |
1.055 * torch.pow(image_rgb, 1 / 2.4) - 0.055 | |
) | |
if isinstance(image, Image.Image): | |
image_srgb = Image.fromarray( | |
(image_srgb.cpu().numpy() * | |
255).astype( | |
np.uint8)) | |
elif isinstance(image, np.ndarray): | |
image_srgb = image_srgb.cpu().numpy() | |
else: | |
image_srgb = image_srgb.to(image.device) | |
return image_srgb | |
def _render( | |
self, | |
glctx, | |
mvp, | |
pos, | |
pos_idx, | |
uv, | |
uv_idx, | |
tex, | |
resolution, | |
max_mip_level, | |
keep_alpha, | |
filter_mode | |
): | |
pos_clip = transform_pos(mvp, pos) | |
if isinstance(resolution, (int, float)): | |
resolution = [resolution, resolution] | |
rast_out, rast_out_db = self.raster_rasterize( | |
glctx, pos_clip, pos_idx, resolution=resolution) | |
tex = tex.contiguous() | |
if filter_mode == 'linear-mipmap-linear': | |
texc, texd = self.raster_interpolate( | |
uv[None, ...], rast_out, uv_idx, rast_db=rast_out_db, diff_attrs='all') | |
color = self.raster_texture( | |
tex[None, ...], texc, texd, filter_mode='linear-mipmap-linear', max_mip_level=max_mip_level) | |
else: | |
texc, _ = self.raster_interpolate(uv[None, ...], rast_out, uv_idx) | |
color = self.raster_texture(tex[None, ...], texc, filter_mode=filter_mode) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
color = color * visible_mask # Mask out background. | |
if self.use_antialias: | |
color = self.raster_antialias(color, rast_out, pos_clip, pos_idx) | |
if keep_alpha: | |
color = torch.cat([color, visible_mask], dim=-1) | |
return color[0, ...] | |
def render( | |
self, | |
elev, | |
azim, | |
camera_distance=None, | |
center=None, | |
resolution=None, | |
tex=None, | |
keep_alpha=True, | |
bgcolor=None, | |
filter_mode=None, | |
return_type='th' | |
): | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=elev, | |
azim=azim, | |
camera_distance=self.camera_distance if camera_distance is None else camera_distance, | |
center=center) | |
r_mvp = np.matmul(proj, r_mv).astype(np.float32) | |
if tex is not None: | |
if isinstance(tex, Image.Image): | |
tex = torch.tensor(np.array(tex) / 255.0) | |
elif isinstance(tex, np.ndarray): | |
tex = torch.tensor(tex) | |
if tex.dim() == 2: | |
tex = tex.unsqueeze(-1) | |
tex = tex.float().to(self.device) | |
image = self._render(r_mvp, self.vtx_pos, self.pos_idx, self.vtx_uv, self.uv_idx, | |
self.tex if tex is None else tex, | |
self.default_resolution if resolution is None else resolution, | |
self.max_mip_level, True, filter_mode if filter_mode else self.filter_mode) | |
mask = (image[..., [-1]] == 1).float() | |
if bgcolor is None: | |
bgcolor = [0 for _ in range(image.shape[-1] - 1)] | |
image = image * mask + (1 - mask) * \ | |
torch.tensor(bgcolor + [0]).to(self.device) | |
if keep_alpha == False: | |
image = image[..., :-1] | |
if return_type == 'np': | |
image = image.cpu().numpy() | |
elif return_type == 'pl': | |
image = image.squeeze(-1).cpu().numpy() * 255 | |
image = Image.fromarray(image.astype(np.uint8)) | |
return image | |
def render_normal( | |
self, | |
elev, | |
azim, | |
camera_distance=None, | |
center=None, | |
resolution=None, | |
bg_color=[1, 1, 1], | |
use_abs_coor=False, | |
normalize_rgb=True, | |
return_type='th' | |
): | |
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center) | |
if resolution is None: | |
resolution = self.default_resolution | |
if isinstance(resolution, (int, float)): | |
resolution = [resolution, resolution] | |
rast_out, rast_out_db = self.raster_rasterize( | |
pos_clip, self.pos_idx, resolution=resolution) | |
if use_abs_coor: | |
mesh_triangles = self.vtx_pos[self.pos_idx[:, :3], :] | |
else: | |
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
mesh_triangles = pos_camera[self.pos_idx[:, :3], :] | |
face_normals = F.normalize( | |
torch.cross(mesh_triangles[:, | |
1, | |
:] - mesh_triangles[:, | |
0, | |
:], | |
mesh_triangles[:, | |
2, | |
:] - mesh_triangles[:, | |
0, | |
:], | |
dim=-1), | |
dim=-1) | |
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), ) | |
vertex_normals = torch.from_numpy( | |
vertex_normals).float().to(self.device).contiguous() | |
# Interpolate normal values across the rasterized pixels | |
normal, _ = self.raster_interpolate( | |
vertex_normals[None, ...], rast_out, self.pos_idx) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
normal = normal * visible_mask + \ | |
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 - | |
visible_mask) # Mask out background. | |
if normalize_rgb: | |
normal = (normal + 1) * 0.5 | |
if self.use_antialias: | |
normal = self.raster_antialias(normal, rast_out, pos_clip, self.pos_idx) | |
image = normal[0, ...] | |
if return_type == 'np': | |
image = image.cpu().numpy() | |
elif return_type == 'pl': | |
image = image.cpu().numpy() * 255 | |
image = Image.fromarray(image.astype(np.uint8)) | |
return image | |
def convert_normal_map(self, image): | |
# blue is front, red is left, green is top | |
if isinstance(image, Image.Image): | |
image = np.array(image) | |
mask = (image == [255, 255, 255]).all(axis=-1) | |
image = (image / 255.0) * 2.0 - 1.0 | |
image[..., [1]] = -image[..., [1]] | |
image[..., [1, 2]] = image[..., [2, 1]] | |
image[..., [0]] = -image[..., [0]] | |
image = (image + 1.0) * 0.5 | |
image = (image * 255).astype(np.uint8) | |
image[mask] = [127, 127, 255] | |
return Image.fromarray(image) | |
def get_pos_from_mvp(self, elev, azim, camera_distance, center): | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=elev, | |
azim=azim, | |
camera_distance=self.camera_distance if camera_distance is None else camera_distance, | |
center=center) | |
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
pos_clip = transform_pos(proj, pos_camera) | |
return pos_camera, pos_clip | |
def render_depth( | |
self, | |
elev, | |
azim, | |
camera_distance=None, | |
center=None, | |
resolution=None, | |
return_type='th' | |
): | |
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center) | |
if resolution is None: | |
resolution = self.default_resolution | |
if isinstance(resolution, (int, float)): | |
resolution = [resolution, resolution] | |
rast_out, rast_out_db = self.raster_rasterize( | |
pos_clip, self.pos_idx, resolution=resolution) | |
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous() | |
# Interpolate depth values across the rasterized pixels | |
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
depth_max, depth_min = depth[visible_mask > | |
0].max(), depth[visible_mask > 0].min() | |
depth = (depth - depth_min) / (depth_max - depth_min) | |
depth = depth * visible_mask # Mask out background. | |
if self.use_antialias: | |
depth = self.raster_antialias(depth, rast_out, pos_clip, self.pos_idx) | |
image = depth[0, ...] | |
if return_type == 'np': | |
image = image.cpu().numpy() | |
elif return_type == 'pl': | |
image = image.squeeze(-1).cpu().numpy() * 255 | |
image = Image.fromarray(image.astype(np.uint8)) | |
return image | |
def render_position(self, elev, azim, camera_distance=None, center=None, | |
resolution=None, bg_color=[1, 1, 1], return_type='th'): | |
pos_camera, pos_clip = self.get_pos_from_mvp(elev, azim, camera_distance, center) | |
if resolution is None: | |
resolution = self.default_resolution | |
if isinstance(resolution, (int, float)): | |
resolution = [resolution, resolution] | |
rast_out, rast_out_db = self.raster_rasterize( | |
pos_clip, self.pos_idx, resolution=resolution) | |
tex_position = 0.5 - self.vtx_pos[:, :3] / self.scale_factor | |
tex_position = tex_position.contiguous() | |
# Interpolate depth values across the rasterized pixels | |
position, _ = self.raster_interpolate( | |
tex_position[None, ...], rast_out, self.pos_idx) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1) | |
position = position * visible_mask + \ | |
torch.tensor(bg_color, dtype=torch.float32, device=self.device) * (1 - | |
visible_mask) # Mask out background. | |
if self.use_antialias: | |
position = self.raster_antialias(position, rast_out, pos_clip, self.pos_idx) | |
image = position[0, ...] | |
if return_type == 'np': | |
image = image.cpu().numpy() | |
elif return_type == 'pl': | |
image = image.squeeze(-1).cpu().numpy() * 255 | |
image = Image.fromarray(image.astype(np.uint8)) | |
return image | |
def render_uvpos(self, return_type='th'): | |
image = self.uv_feature_map(self.vtx_pos * 0.5 + 0.5) | |
if return_type == 'np': | |
image = image.cpu().numpy() | |
elif return_type == 'pl': | |
image = image.cpu().numpy() * 255 | |
image = Image.fromarray(image.astype(np.uint8)) | |
return image | |
def uv_feature_map(self, vert_feat, bg=None): | |
vtx_uv = self.vtx_uv * 2 - 1.0 | |
vtx_uv = torch.cat( | |
[vtx_uv, torch.zeros_like(self.vtx_uv)], dim=1).unsqueeze(0) | |
vtx_uv[..., -1] = 1 | |
uv_idx = self.uv_idx | |
rast_out, rast_out_db = self.raster_rasterize( | |
vtx_uv, uv_idx, resolution=self.texture_size) | |
feat_map, _ = self.raster_interpolate(vert_feat[None, ...], rast_out, uv_idx) | |
feat_map = feat_map[0, ...] | |
if bg is not None: | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
feat_map[visible_mask == 0] = bg | |
return feat_map | |
def render_sketch_from_geometry(self, normal_image, depth_image): | |
normal_image_np = normal_image.cpu().numpy() | |
depth_image_np = depth_image.cpu().numpy() | |
normal_image_np = (normal_image_np * 255).astype(np.uint8) | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
normal_image_np = cv2.cvtColor(normal_image_np, cv2.COLOR_RGB2GRAY) | |
normal_edges = cv2.Canny(normal_image_np, 80, 150) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
combined_edges = np.maximum(normal_edges, depth_edges) | |
sketch_image = torch.from_numpy(combined_edges).to( | |
normal_image.device).float() / 255.0 | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def render_sketch_from_depth(self, depth_image): | |
depth_image_np = depth_image.cpu().numpy() | |
depth_image_np = (depth_image_np * 255).astype(np.uint8) | |
depth_edges = cv2.Canny(depth_image_np, 30, 80) | |
combined_edges = depth_edges | |
sketch_image = torch.from_numpy(combined_edges).to( | |
depth_image.device).float() / 255.0 | |
sketch_image = sketch_image.unsqueeze(-1) | |
return sketch_image | |
def back_project(self, image, elev, azim, | |
camera_distance=None, center=None, method=None): | |
if isinstance(image, Image.Image): | |
image = torch.tensor(np.array(image) / 255.0) | |
elif isinstance(image, np.ndarray): | |
image = torch.tensor(image) | |
if image.dim() == 2: | |
image = image.unsqueeze(-1) | |
image = image.float().to(self.device) | |
resolution = image.shape[:2] | |
channel = image.shape[-1] | |
texture = torch.zeros(self.texture_size + (channel,)).to(self.device) | |
cos_map = torch.zeros(self.texture_size + (1,)).to(self.device) | |
proj = self.camera_proj_mat | |
r_mv = get_mv_matrix( | |
elev=elev, | |
azim=azim, | |
camera_distance=self.camera_distance if camera_distance is None else camera_distance, | |
center=center) | |
pos_camera = transform_pos(r_mv, self.vtx_pos, keepdim=True) | |
pos_clip = transform_pos(proj, pos_camera) | |
pos_camera = pos_camera[:, :3] / pos_camera[:, 3:4] | |
v0 = pos_camera[self.pos_idx[:, 0], :] | |
v1 = pos_camera[self.pos_idx[:, 1], :] | |
v2 = pos_camera[self.pos_idx[:, 2], :] | |
face_normals = F.normalize( | |
torch.cross( | |
v1 - v0, | |
v2 - v0, | |
dim=-1), | |
dim=-1) | |
vertex_normals = trimesh.geometry.mean_vertex_normals(vertex_count=self.vtx_pos.shape[0], | |
faces=self.pos_idx.cpu(), | |
face_normals=face_normals.cpu(), ) | |
vertex_normals = torch.from_numpy( | |
vertex_normals).float().to(self.device).contiguous() | |
tex_depth = pos_camera[:, 2].reshape(1, -1, 1).contiguous() | |
rast_out, rast_out_db = self.raster_rasterize( | |
pos_clip, self.pos_idx, resolution=resolution) | |
visible_mask = torch.clamp(rast_out[..., -1:], 0, 1)[0, ...] | |
normal, _ = self.raster_interpolate( | |
vertex_normals[None, ...], rast_out, self.pos_idx) | |
normal = normal[0, ...] | |
uv, _ = self.raster_interpolate(self.vtx_uv[None, ...], rast_out, self.uv_idx) | |
depth, _ = self.raster_interpolate(tex_depth, rast_out, self.pos_idx) | |
depth = depth[0, ...] | |
depth_max, depth_min = depth[visible_mask > | |
0].max(), depth[visible_mask > 0].min() | |
depth_normalized = (depth - depth_min) / (depth_max - depth_min) | |
depth_image = depth_normalized * visible_mask # Mask out background. | |
sketch_image = self.render_sketch_from_depth(depth_image) | |
lookat = torch.tensor([[0, 0, -1]], device=self.device) | |
cos_image = torch.nn.functional.cosine_similarity( | |
lookat, normal.view(-1, 3)) | |
cos_image = cos_image.view(normal.shape[0], normal.shape[1], 1) | |
cos_thres = np.cos(self.bake_angle_thres / 180 * np.pi) | |
cos_image[cos_image < cos_thres] = 0 | |
# shrink | |
kernel_size = self.bake_unreliable_kernel_size * 2 + 1 | |
kernel = torch.ones( | |
(1, 1, kernel_size, kernel_size), dtype=torch.float32).to( | |
sketch_image.device) | |
visible_mask = visible_mask.permute(2, 0, 1).unsqueeze(0).float() | |
visible_mask = F.conv2d( | |
1.0 - visible_mask, | |
kernel, | |
padding=kernel_size // 2) | |
visible_mask = 1.0 - (visible_mask > 0).float() # 二值化 | |
visible_mask = visible_mask.squeeze(0).permute(1, 2, 0) | |
sketch_image = sketch_image.permute(2, 0, 1).unsqueeze(0) | |
sketch_image = F.conv2d(sketch_image, kernel, padding=kernel_size // 2) | |
sketch_image = (sketch_image > 0).float() # 二值化 | |
sketch_image = sketch_image.squeeze(0).permute(1, 2, 0) | |
visible_mask = visible_mask * (sketch_image < 0.5) | |
cos_image[visible_mask == 0] = 0 | |
method = self.bake_mode if method is None else method | |
if method == 'linear': | |
proj_mask = (visible_mask != 0).view(-1) | |
uv = uv.squeeze(0).contiguous().view(-1, 2)[proj_mask] | |
image = image.squeeze(0).contiguous().view(-1, channel)[proj_mask] | |
cos_image = cos_image.contiguous().view(-1, 1)[proj_mask] | |
sketch_image = sketch_image.contiguous().view(-1, 1)[proj_mask] | |
texture = linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], image) | |
cos_map = linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], cos_image) | |
boundary_map = linear_grid_put_2d( | |
self.texture_size[1], self.texture_size[0], uv[..., [1, 0]], sketch_image) | |
else: | |
raise f'No bake mode {method}' | |
return texture, cos_map, boundary_map | |
def bake_texture(self, colors, elevs, azims, | |
camera_distance=None, center=None, exp=6, weights=None): | |
for i in range(len(colors)): | |
if isinstance(colors[i], Image.Image): | |
colors[i] = torch.tensor( | |
np.array( | |
colors[i]) / 255.0, | |
device=self.device).float() | |
if weights is None: | |
weights = [1.0 for _ in range(colors)] | |
textures = [] | |
cos_maps = [] | |
for color, elev, azim, weight in zip(colors, elevs, azims, weights): | |
texture, cos_map, _ = self.back_project( | |
color, elev, azim, camera_distance, center) | |
cos_map = weight * (cos_map ** exp) | |
textures.append(texture) | |
cos_maps.append(cos_map) | |
texture_merge, trust_map_merge = self.fast_bake_texture( | |
textures, cos_maps) | |
return texture_merge, trust_map_merge | |
def fast_bake_texture(self, textures, cos_maps): | |
channel = textures[0].shape[-1] | |
texture_merge = torch.zeros( | |
self.texture_size + (channel,)).to(self.device) | |
trust_map_merge = torch.zeros(self.texture_size + (1,)).to(self.device) | |
for texture, cos_map in zip(textures, cos_maps): | |
view_sum = (cos_map > 0).sum() | |
painted_sum = ((cos_map > 0) * (trust_map_merge > 0)).sum() | |
if painted_sum / view_sum > 0.99: | |
continue | |
texture_merge += texture * cos_map | |
trust_map_merge += cos_map | |
texture_merge = texture_merge / torch.clamp(trust_map_merge, min=1E-8) | |
return texture_merge, trust_map_merge > 1E-8 | |
def uv_inpaint(self, texture, mask): | |
if isinstance(texture, torch.Tensor): | |
texture_np = texture.cpu().numpy() | |
elif isinstance(texture, np.ndarray): | |
texture_np = texture | |
elif isinstance(texture, Image.Image): | |
texture_np = np.array(texture) / 255.0 | |
vtx_pos, pos_idx, vtx_uv, uv_idx = self.get_mesh() | |
texture_np, mask = meshVerticeInpaint( | |
texture_np, mask, vtx_pos, vtx_uv, pos_idx, uv_idx) | |
texture_np = cv2.inpaint( | |
(texture_np * | |
255).astype( | |
np.uint8), | |
255 - | |
mask, | |
3, | |
cv2.INPAINT_NS) | |
return texture_np | |