Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import math | |
from dataclasses import dataclass | |
from typing import List, Tuple, Optional | |
import torch | |
from einops import rearrange | |
from torch import Tensor, nn | |
def attention(q: Tensor, k: Tensor, v: Tensor, **kwargs) -> Tensor: | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
x = rearrange(x, "B H L D -> B L (H D)") | |
return x | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
t.device | |
) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(dim)) | |
def forward(self, x: Tensor): | |
x_dtype = x.dtype | |
x = x.float() | |
rrms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + 1e-6) | |
return (x * rrms).to(dtype=x_dtype) * self.scale | |
class QKNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
class SelfAttention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
class Modulation(nn.Module): | |
def __init__(self, dim: int, double: bool): | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def forward(self, vec: Tensor) -> Tuple[ModulationOut, Optional[ModulationOut]]: | |
out = self.lin(nn.functional.silu(vec))[:, None, :] | |
out = out.chunk(self.multiplier, dim=-1) | |
return ( | |
ModulationOut(*out[:3]), | |
ModulationOut(*out[3:]) if self.is_double else None, | |
) | |
class DoubleStreamBlock(nn.Module): | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float, | |
qkv_bias: bool = False, | |
): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> Tuple[Tensor, Tensor]: | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
q = torch.cat((txt_q, img_q), dim=2) | |
k = torch.cat((txt_k, img_k), dim=2) | |
v = torch.cat((txt_v, img_v), dim=2) | |
attn = attention(q, k, v, pe=pe) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:] | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
return img, txt | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: Optional[float] = None, | |
): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
return x + mod.gate * output | |
class LastLayer(nn.Module): | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x: Tensor, vec: Tensor) -> Tensor: | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |
class Hunyuan3DDiT(nn.Module): | |
def __init__( | |
self, | |
in_channels: int = 64, | |
context_in_dim: int = 1536, | |
hidden_size: int = 1024, | |
mlp_ratio: float = 4.0, | |
num_heads: int = 16, | |
depth: int = 16, | |
depth_single_blocks: int = 32, | |
axes_dim: List[int] = [64], | |
theta: int = 10_000, | |
qkv_bias: bool = True, | |
time_factor: float = 1000, | |
ckpt_path: Optional[str] = None, | |
**kwargs, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.context_in_dim = context_in_dim | |
self.hidden_size = hidden_size | |
self.mlp_ratio = mlp_ratio | |
self.num_heads = num_heads | |
self.depth = depth | |
self.depth_single_blocks = depth_single_blocks | |
self.axes_dim = axes_dim | |
self.theta = theta | |
self.qkv_bias = qkv_bias | |
self.time_factor = time_factor | |
self.out_channels = self.in_channels | |
if hidden_size % num_heads != 0: | |
raise ValueError( | |
f"Hidden size {hidden_size} must be divisible by num_heads {num_heads}" | |
) | |
pe_dim = hidden_size // num_heads | |
if sum(axes_dim) != pe_dim: | |
raise ValueError(f"Got {axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = hidden_size | |
self.num_heads = num_heads | |
self.latent_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.cond_in = nn.Linear(context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
) | |
for _ in range(depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=mlp_ratio, | |
) | |
for _ in range(depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
if ckpt_path is not None: | |
print('restored denoiser ckpt', ckpt_path) | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
if 'state_dict' not in ckpt: | |
# deepspeed ckpt | |
state_dict = {} | |
for k in ckpt.keys(): | |
new_k = k.replace('_forward_module.', '') | |
state_dict[new_k] = ckpt[k] | |
else: | |
state_dict = ckpt["state_dict"] | |
final_state_dict = {} | |
for k, v in state_dict.items(): | |
if k.startswith('model.'): | |
final_state_dict[k.replace('model.', '')] = v | |
else: | |
final_state_dict[k] = v | |
missing, unexpected = self.load_state_dict(final_state_dict, strict=False) | |
print('unexpected keys:', unexpected) | |
print('missing keys:', missing) | |
def forward( | |
self, | |
x, | |
t, | |
contexts, | |
**kwargs, | |
) -> Tensor: | |
cond = contexts['main'] | |
latent = self.latent_in(x) | |
vec = self.time_in(timestep_embedding(t, 256, self.time_factor).to(dtype=latent.dtype)) | |
cond = self.cond_in(cond) | |
pe = None | |
for block in self.double_blocks: | |
latent, cond = block(img=latent, txt=cond, vec=vec, pe=pe) | |
latent = torch.cat((cond, latent), 1) | |
for block in self.single_blocks: | |
latent = block(latent, vec=vec, pe=pe) | |
latent = latent[:, cond.shape[1]:, ...] | |
latent = self.final_layer(latent, vec) | |
return latent | |