Spaces:
Running
on
L40S
Running
on
L40S
| """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" | |
| import torch | |
| from torch import nn, einsum | |
| import torch.nn.functional as F | |
| from functools import partial | |
| from inspect import isfunction | |
| from collections import namedtuple | |
| from einops import rearrange, repeat, reduce | |
| # constants | |
| DEFAULT_DIM_HEAD = 64 | |
| Intermediates = namedtuple('Intermediates', [ | |
| 'pre_softmax_attn', | |
| 'post_softmax_attn' | |
| ]) | |
| LayerIntermediates = namedtuple('Intermediates', [ | |
| 'hiddens', | |
| 'attn_intermediates' | |
| ]) | |
| class AbsolutePositionalEmbedding(nn.Module): | |
| def __init__(self, dim, max_seq_len): | |
| super().__init__() | |
| self.emb = nn.Embedding(max_seq_len, dim) | |
| self.init_() | |
| def init_(self): | |
| nn.init.normal_(self.emb.weight, std=0.02) | |
| def forward(self, x): | |
| n = torch.arange(x.shape[1], device=x.device) | |
| return self.emb(n)[None, :, :] | |
| class FixedPositionalEmbedding(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
| self.register_buffer('inv_freq', inv_freq) | |
| def forward(self, x, seq_dim=1, offset=0): | |
| t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset | |
| sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq) | |
| emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) | |
| return emb[None, :, :] | |
| # helpers | |
| def exists(val): | |
| return val is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def always(val): | |
| def inner(*args, **kwargs): | |
| return val | |
| return inner | |
| def not_equals(val): | |
| def inner(x): | |
| return x != val | |
| return inner | |
| def equals(val): | |
| def inner(x): | |
| return x == val | |
| return inner | |
| def max_neg_value(tensor): | |
| return -torch.finfo(tensor.dtype).max | |
| # keyword argument helpers | |
| def pick_and_pop(keys, d): | |
| values = list(map(lambda key: d.pop(key), keys)) | |
| return dict(zip(keys, values)) | |
| def group_dict_by_key(cond, d): | |
| return_val = [dict(), dict()] | |
| for key in d.keys(): | |
| match = bool(cond(key)) | |
| ind = int(not match) | |
| return_val[ind][key] = d[key] | |
| return (*return_val,) | |
| def string_begins_with(prefix, str): | |
| return str.startswith(prefix) | |
| def group_by_key_prefix(prefix, d): | |
| return group_dict_by_key(partial(string_begins_with, prefix), d) | |
| def groupby_prefix_and_trim(prefix, d): | |
| kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d) | |
| kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items()))) | |
| return kwargs_without_prefix, kwargs | |
| # classes | |
| class Scale(nn.Module): | |
| def __init__(self, value, fn): | |
| super().__init__() | |
| self.value = value | |
| self.fn = fn | |
| def forward(self, x, **kwargs): | |
| x, *rest = self.fn(x, **kwargs) | |
| return (x * self.value, *rest) | |
| class Rezero(nn.Module): | |
| def __init__(self, fn): | |
| super().__init__() | |
| self.fn = fn | |
| self.g = nn.Parameter(torch.zeros(1)) | |
| def forward(self, x, **kwargs): | |
| x, *rest = self.fn(x, **kwargs) | |
| return (x * self.g, *rest) | |
| class ScaleNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-5): | |
| super().__init__() | |
| self.scale = dim ** -0.5 | |
| self.eps = eps | |
| self.g = nn.Parameter(torch.ones(1)) | |
| def forward(self, x): | |
| norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
| return x / norm.clamp(min=self.eps) * self.g | |
| class RMSNorm(nn.Module): | |
| def __init__(self, dim, eps=1e-8): | |
| super().__init__() | |
| self.scale = dim ** -0.5 | |
| self.eps = eps | |
| self.g = nn.Parameter(torch.ones(dim)) | |
| def forward(self, x): | |
| norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
| return x / norm.clamp(min=self.eps) * self.g | |
| class Residual(nn.Module): | |
| def forward(self, x, residual): | |
| return x + residual | |
| class GRUGating(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.gru = nn.GRUCell(dim, dim) | |
| def forward(self, x, residual): | |
| gated_output = self.gru( | |
| rearrange(x, 'b n d -> (b n) d'), | |
| rearrange(residual, 'b n d -> (b n) d') | |
| ) | |
| return gated_output.reshape_as(x) | |
| # feedforward | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = default(dim_out, dim) | |
| project_in = nn.Sequential( | |
| nn.Linear(dim, inner_dim), | |
| nn.GELU() | |
| ) if not glu else GEGLU(dim, inner_dim) | |
| self.net = nn.Sequential( | |
| project_in, | |
| nn.Dropout(dropout), | |
| nn.Linear(inner_dim, dim_out) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| # attention. | |
| class Attention(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| dim_head=DEFAULT_DIM_HEAD, | |
| heads=8, | |
| causal=False, | |
| mask=None, | |
| talking_heads=False, | |
| sparse_topk=None, | |
| use_entmax15=False, | |
| num_mem_kv=0, | |
| dropout=0., | |
| on_attn=False | |
| ): | |
| super().__init__() | |
| if use_entmax15: | |
| raise NotImplementedError("Check out entmax activation instead of softmax activation!") | |
| self.scale = dim_head ** -0.5 | |
| self.heads = heads | |
| self.causal = causal | |
| self.mask = mask | |
| inner_dim = dim_head * heads | |
| self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(dim, inner_dim, bias=False) | |
| self.dropout = nn.Dropout(dropout) | |
| # talking heads | |
| self.talking_heads = talking_heads | |
| if talking_heads: | |
| self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
| self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
| # explicit topk sparse attention | |
| self.sparse_topk = sparse_topk | |
| # entmax | |
| #self.attn_fn = entmax15 if use_entmax15 else F.softmax | |
| self.attn_fn = F.softmax | |
| # add memory key / values | |
| self.num_mem_kv = num_mem_kv | |
| if num_mem_kv > 0: | |
| self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
| self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
| # attention on attention | |
| self.attn_on_attn = on_attn | |
| self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim) | |
| def forward( | |
| self, | |
| x, | |
| context=None, | |
| mask=None, | |
| context_mask=None, | |
| rel_pos=None, | |
| sinusoidal_emb=None, | |
| prev_attn=None, | |
| mem=None | |
| ): | |
| b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device | |
| kv_input = default(context, x) | |
| q_input = x | |
| k_input = kv_input | |
| v_input = kv_input | |
| if exists(mem): | |
| k_input = torch.cat((mem, k_input), dim=-2) | |
| v_input = torch.cat((mem, v_input), dim=-2) | |
| if exists(sinusoidal_emb): | |
| # in shortformer, the query would start at a position offset depending on the past cached memory | |
| offset = k_input.shape[-2] - q_input.shape[-2] | |
| q_input = q_input + sinusoidal_emb(q_input, offset=offset) | |
| k_input = k_input + sinusoidal_emb(k_input) | |
| q = self.to_q(q_input) | |
| k = self.to_k(k_input) | |
| v = self.to_v(v_input) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v)) | |
| input_mask = None | |
| if any(map(exists, (mask, context_mask))): | |
| q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) | |
| k_mask = q_mask if not exists(context) else context_mask | |
| k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool()) | |
| q_mask = rearrange(q_mask, 'b i -> b () i ()') | |
| k_mask = rearrange(k_mask, 'b j -> b () () j') | |
| input_mask = q_mask * k_mask | |
| if self.num_mem_kv > 0: | |
| mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v)) | |
| k = torch.cat((mem_k, k), dim=-2) | |
| v = torch.cat((mem_v, v), dim=-2) | |
| if exists(input_mask): | |
| input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) | |
| dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | |
| mask_value = max_neg_value(dots) | |
| if exists(prev_attn): | |
| dots = dots + prev_attn | |
| pre_softmax_attn = dots | |
| if talking_heads: | |
| dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous() | |
| if exists(rel_pos): | |
| dots = rel_pos(dots) | |
| if exists(input_mask): | |
| dots.masked_fill_(~input_mask, mask_value) | |
| del input_mask | |
| if self.causal: | |
| i, j = dots.shape[-2:] | |
| r = torch.arange(i, device=device) | |
| mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j') | |
| mask = F.pad(mask, (j - i, 0), value=False) | |
| dots.masked_fill_(mask, mask_value) | |
| del mask | |
| if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: | |
| top, _ = dots.topk(self.sparse_topk, dim=-1) | |
| vk = top[..., -1].unsqueeze(-1).expand_as(dots) | |
| mask = dots < vk | |
| dots.masked_fill_(mask, mask_value) | |
| del mask | |
| attn = self.attn_fn(dots, dim=-1) | |
| post_softmax_attn = attn | |
| attn = self.dropout(attn) | |
| if talking_heads: | |
| attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous() | |
| out = einsum('b h i j, b h j d -> b h i d', attn, v) | |
| out = rearrange(out, 'b h n d -> b n (h d)') | |
| intermediates = Intermediates( | |
| pre_softmax_attn=pre_softmax_attn, | |
| post_softmax_attn=post_softmax_attn | |
| ) | |
| return self.to_out(out), intermediates | |
| class AttentionLayers(nn.Module): | |
| def __init__( | |
| self, | |
| dim, | |
| depth, | |
| heads=8, | |
| causal=False, | |
| cross_attend=False, | |
| only_cross=False, | |
| use_scalenorm=False, | |
| use_rmsnorm=False, | |
| use_rezero=False, | |
| rel_pos_num_buckets=32, | |
| rel_pos_max_distance=128, | |
| position_infused_attn=False, | |
| custom_layers=None, | |
| sandwich_coef=None, | |
| par_ratio=None, | |
| residual_attn=False, | |
| cross_residual_attn=False, | |
| macaron=False, | |
| pre_norm=True, | |
| gate_residual=False, | |
| **kwargs | |
| ): | |
| super().__init__() | |
| ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs) | |
| attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs) | |
| dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD) | |
| self.dim = dim | |
| self.depth = depth | |
| self.layers = nn.ModuleList([]) | |
| self.has_pos_emb = position_infused_attn | |
| self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None | |
| self.rotary_pos_emb = always(None) | |
| assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance' | |
| self.rel_pos = None | |
| self.pre_norm = pre_norm | |
| self.residual_attn = residual_attn | |
| self.cross_residual_attn = cross_residual_attn | |
| norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm | |
| norm_class = RMSNorm if use_rmsnorm else norm_class | |
| norm_fn = partial(norm_class, dim) | |
| norm_fn = nn.Identity if use_rezero else norm_fn | |
| branch_fn = Rezero if use_rezero else None | |
| if cross_attend and not only_cross: | |
| default_block = ('a', 'c', 'f') | |
| elif cross_attend and only_cross: | |
| default_block = ('c', 'f') | |
| else: | |
| default_block = ('a', 'f') | |
| if macaron: | |
| default_block = ('f',) + default_block | |
| if exists(custom_layers): | |
| layer_types = custom_layers | |
| elif exists(par_ratio): | |
| par_depth = depth * len(default_block) | |
| assert 1 < par_ratio <= par_depth, 'par ratio out of range' | |
| default_block = tuple(filter(not_equals('f'), default_block)) | |
| par_attn = par_depth // par_ratio | |
| depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper | |
| par_width = (depth_cut + depth_cut // par_attn) // par_attn | |
| assert len(default_block) <= par_width, 'default block is too large for par_ratio' | |
| par_block = default_block + ('f',) * (par_width - len(default_block)) | |
| par_head = par_block * par_attn | |
| layer_types = par_head + ('f',) * (par_depth - len(par_head)) | |
| elif exists(sandwich_coef): | |
| assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth' | |
| layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef | |
| else: | |
| layer_types = default_block * depth | |
| self.layer_types = layer_types | |
| self.num_attn_layers = len(list(filter(equals('a'), layer_types))) | |
| for layer_type in self.layer_types: | |
| if layer_type == 'a': | |
| layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) | |
| elif layer_type == 'c': | |
| layer = Attention(dim, heads=heads, **attn_kwargs) | |
| elif layer_type == 'f': | |
| layer = FeedForward(dim, **ff_kwargs) | |
| layer = layer if not macaron else Scale(0.5, layer) | |
| else: | |
| raise Exception(f'invalid layer type {layer_type}') | |
| if isinstance(layer, Attention) and exists(branch_fn): | |
| layer = branch_fn(layer) | |
| if gate_residual: | |
| residual_fn = GRUGating(dim) | |
| else: | |
| residual_fn = Residual() | |
| self.layers.append(nn.ModuleList([ | |
| norm_fn(), | |
| layer, | |
| residual_fn | |
| ])) | |
| def forward( | |
| self, | |
| x, | |
| context=None, | |
| mask=None, | |
| context_mask=None, | |
| mems=None, | |
| return_hiddens=False | |
| ): | |
| hiddens = [] | |
| intermediates = [] | |
| prev_attn = None | |
| prev_cross_attn = None | |
| mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers | |
| for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)): | |
| is_last = ind == (len(self.layers) - 1) | |
| if layer_type == 'a': | |
| hiddens.append(x) | |
| layer_mem = mems.pop(0) | |
| residual = x | |
| if self.pre_norm: | |
| x = norm(x) | |
| if layer_type == 'a': | |
| out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos, | |
| prev_attn=prev_attn, mem=layer_mem) | |
| elif layer_type == 'c': | |
| out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn) | |
| elif layer_type == 'f': | |
| out = block(x) | |
| x = residual_fn(out, residual) | |
| if layer_type in ('a', 'c'): | |
| intermediates.append(inter) | |
| if layer_type == 'a' and self.residual_attn: | |
| prev_attn = inter.pre_softmax_attn | |
| elif layer_type == 'c' and self.cross_residual_attn: | |
| prev_cross_attn = inter.pre_softmax_attn | |
| if not self.pre_norm and not is_last: | |
| x = norm(x) | |
| if return_hiddens: | |
| intermediates = LayerIntermediates( | |
| hiddens=hiddens, | |
| attn_intermediates=intermediates | |
| ) | |
| return x, intermediates | |
| return x | |
| class Encoder(AttentionLayers): | |
| def __init__(self, **kwargs): | |
| assert 'causal' not in kwargs, 'cannot set causality on encoder' | |
| super().__init__(causal=False, **kwargs) | |
| class TransformerWrapper(nn.Module): | |
| def __init__( | |
| self, | |
| *, | |
| num_tokens, | |
| max_seq_len, | |
| attn_layers, | |
| emb_dim=None, | |
| max_mem_len=0., | |
| emb_dropout=0., | |
| num_memory_tokens=None, | |
| tie_embedding=False, | |
| use_pos_emb=True | |
| ): | |
| super().__init__() | |
| assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder' | |
| dim = attn_layers.dim | |
| emb_dim = default(emb_dim, dim) | |
| self.max_seq_len = max_seq_len | |
| self.max_mem_len = max_mem_len | |
| self.num_tokens = num_tokens | |
| self.token_emb = nn.Embedding(num_tokens, emb_dim) | |
| self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if ( | |
| use_pos_emb and not attn_layers.has_pos_emb) else always(0) | |
| self.emb_dropout = nn.Dropout(emb_dropout) | |
| self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() | |
| self.attn_layers = attn_layers | |
| self.norm = nn.LayerNorm(dim) | |
| self.init_() | |
| self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t() | |
| # memory tokens (like [cls]) from Memory Transformers paper | |
| num_memory_tokens = default(num_memory_tokens, 0) | |
| self.num_memory_tokens = num_memory_tokens | |
| if num_memory_tokens > 0: | |
| self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) | |
| # let funnel encoder know number of memory tokens, if specified | |
| if hasattr(attn_layers, 'num_memory_tokens'): | |
| attn_layers.num_memory_tokens = num_memory_tokens | |
| def init_(self): | |
| nn.init.normal_(self.token_emb.weight, std=0.02) | |
| def forward( | |
| self, | |
| x, | |
| return_embeddings=False, | |
| mask=None, | |
| return_mems=False, | |
| return_attn=False, | |
| mems=None, | |
| **kwargs | |
| ): | |
| b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens | |
| x = self.token_emb(x) | |
| x += self.pos_emb(x) | |
| x = self.emb_dropout(x) | |
| x = self.project_emb(x) | |
| if num_mem > 0: | |
| mem = repeat(self.memory_tokens, 'n d -> b n d', b=b) | |
| x = torch.cat((mem, x), dim=1) | |
| # auto-handle masking after appending memory tokens | |
| if exists(mask): | |
| mask = F.pad(mask, (num_mem, 0), value=True) | |
| x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs) | |
| x = self.norm(x) | |
| mem, x = x[:, :num_mem], x[:, num_mem:] | |
| out = self.to_logits(x) if not return_embeddings else x | |
| if return_mems: | |
| hiddens = intermediates.hiddens | |
| new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens | |
| new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems)) | |
| return out, new_mems | |
| if return_attn: | |
| attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates)) | |
| return out, attn_maps | |
| return out | |