TejaCherukuri
Add the required files
f0c1a1a
raw
history blame
6.26 kB
import numpy as np
import cv2
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras.preprocessing import image
from tensorflow.keras import Model
from gcg.utils import logging
def grad_cam(model, img,
layer_name="block5_conv3", label_name=None,
category_id=None):
"""Get a heatmap by Grad-CAM.
Args:
model: A model object, build from tf.keras 2.X.
img: An image ndarray.
layer_name: A string, layer name in model.
label_name: A list or None,
show the label name by assign this argument,
it should be a list of all label names.
category_id: An integer, index of the class.
Default is the category with the highest score in the prediction.
Return:
A heatmap ndarray(without color).
"""
img_tensor = np.expand_dims(img, axis=0)
conv_layer = model.get_layer(layer_name)
heatmap_model = Model([model.inputs], [conv_layer.output, model.output])
with tf.GradientTape() as gtape:
conv_output, predictions = heatmap_model(img_tensor)
if category_id is None:
category_id = np.argmax(predictions[0])
if label_name is not None:
print(label_name[category_id])
output = predictions[:, category_id]
grads = gtape.gradient(output, conv_output)
pooled_grads = tf.reduce_mean(grads, axis=(0, 1, 2))
heatmap = tf.reduce_mean(tf.multiply(pooled_grads, conv_output), axis=-1)
heatmap = np.maximum(heatmap, 0)
max_heat = np.max(heatmap)
if max_heat == 0:
max_heat = 1e-10
heatmap /= max_heat
return np.squeeze(heatmap)
def grad_cam_plus(model, img,
layer_name="block5_conv3", label_name=None,
category_id=None):
"""Get a heatmap by Grad-CAM++.
Args:
model: A model object, build from tf.keras 2.X.
img: An image ndarray.
layer_name: A string, layer name in model.
label_name: A list or None,
show the label name by assign this argument,
it should be a list of all label names.
category_id: An integer, index of the class.
Default is the category with the highest score in the prediction.
Return:
A heatmap ndarray(without color).
"""
img_tensor = np.expand_dims(img, axis=0)
conv_layer = model.get_layer(layer_name)
heatmap_model = Model([model.inputs], [conv_layer.output, model.output])
with tf.GradientTape() as gtape1:
with tf.GradientTape() as gtape2:
with tf.GradientTape() as gtape3:
conv_output, predictions = heatmap_model(img_tensor)
if category_id is None:
category_id = np.argmax(predictions[0])
if label_name is not None:
print(label_name[category_id])
output = predictions[:, category_id]
conv_first_grad = gtape3.gradient(output, conv_output)
conv_second_grad = gtape2.gradient(conv_first_grad, conv_output)
conv_third_grad = gtape1.gradient(conv_second_grad, conv_output)
global_sum = np.sum(conv_output, axis=(0, 1, 2))
alpha_num = conv_second_grad[0]
alpha_denom = conv_second_grad[0]*2.0 + conv_third_grad[0]*global_sum
alpha_denom = np.where(alpha_denom != 0.0, alpha_denom, 1e-10)
alphas = alpha_num/alpha_denom
alpha_normalization_constant = np.sum(alphas, axis=(0,1))
alphas /= alpha_normalization_constant
weights = np.maximum(conv_first_grad[0], 0.0)
deep_linearization_weights = np.sum(weights*alphas, axis=(0,1))
grad_cam_map = np.sum(deep_linearization_weights*conv_output[0], axis=2)
heatmap = np.maximum(grad_cam_map, 0)
max_heat = np.max(heatmap)
if max_heat == 0:
max_heat = 1e-10
heatmap /= max_heat
return heatmap
def preprocess_image(img_path, image_size=(512, 512, 3)):
"""Preprocess the image by reshape and normalization.
Args:
img_path: A string.
target_size: A tuple, reshape to this size.
Return:
An image array.
"""
# Read the image from the specified path
#img = cv2.imread(img_path)
# Convert the image from BGR to RGB
#img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
#img_array=cv2.resize(img, (image_size[0],image_size[1]), fx=1, fy=1,interpolation = cv2.INTER_CUBIC)
img = image.load_img(img_path, target_size=image_size)
img = image.img_to_array(img)
return img
def show_GradCAM(img, heatmap, alpha=0.4, save_path=None, return_array=False):
"""Show the image with heatmap.
Args:
img_path: string.
heatmap: image array, get it by calling grad_cam().
alpha: float, transparency of heatmap.
return_array: bool, return a superimposed image array or not.
Return:
None or image array.
"""
# Resize the heatmap to match the original image dimensions
heatmap = cv2.resize(heatmap, (img.shape[1], img.shape[0]))
# Apply color map to the heatmap
heatmap = (heatmap * 255).astype("uint8")
heatmap_colored = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
# Create superimposed image
superimposed_img = heatmap_colored * alpha + img
superimposed_img = np.clip(superimposed_img, 0, 255).astype("uint8")
# Create the combined plot
fig, axes = plt.subplots(1, 3, figsize=(12, 4))
# Remove space around subplots
fig.subplots_adjust(wspace=0, hspace=0)
# Original Image
axes[0].imshow(img)
axes[0].set_title('Original Image')
axes[0].axis('off')
# Heatmap
axes[1].imshow(heatmap_colored)
axes[1].set_title('Heatmap')
axes[1].axis('off')
# Superimposed Image
axes[2].imshow(superimposed_img)
axes[2].set_title('Superimposed Image')
axes[2].axis('off')
# Adjust layout
plt.tight_layout()
# plt.show()
# Save the figure if save_path is provided
if save_path:
fig.savefig(save_path)
logging.info(f"Saved combined visualization to {save_path}")
# cv2.imwrite(save_path, superimposed_img)
# Return superimposed image if return_array is True
if return_array:
return superimposed_img