from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS # Load Hugging Face embeddings model embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") def create_and_save_vector_store(text_chunks, index_name="faiss_index"): """ Creates a FAISS vector store and saves it locally. """ vector_store = FAISS.from_texts(text_chunks, embedding=embeddings) vector_store.save_local(index_name) def load_vector_store(index_name="faiss_index"): """ Loads the FAISS vector store. """ return FAISS.load_local(index_name, embeddings, allow_dangerous_deserialization=True)