Spaces:
Runtime error
Runtime error
| import os | |
| import PIL.Image | |
| import torch | |
| import numpy as np | |
| from transformers import AutoModelForCausalLM | |
| from janus.models import MultiModalityCausalLM, VLChatProcessor | |
| import time | |
| import re | |
| # Specify the path to the model | |
| model_path = "deepseek-ai/Janus-1.3B" | |
| vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) | |
| tokenizer = vl_chat_processor.tokenizer | |
| vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( | |
| model_path, trust_remote_code=True | |
| ) | |
| vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() | |
| def create_prompt(user_input: str) -> str: | |
| conversation = [ | |
| { | |
| "role": "User", | |
| "content": user_input, | |
| }, | |
| {"role": "Assistant", "content": ""}, | |
| ] | |
| sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
| conversations=conversation, | |
| sft_format=vl_chat_processor.sft_format, | |
| system_prompt="", | |
| ) | |
| prompt = sft_format + vl_chat_processor.image_start_tag | |
| return prompt | |
| def generate( | |
| mmgpt: MultiModalityCausalLM, | |
| vl_chat_processor: VLChatProcessor, | |
| prompt: str, | |
| short_prompt: str, | |
| parallel_size: int = 16, | |
| temperature: float = 1, | |
| cfg_weight: float = 5, | |
| image_token_num_per_image: int = 576, | |
| img_size: int = 384, | |
| patch_size: int = 16, | |
| ): | |
| input_ids = vl_chat_processor.tokenizer.encode(prompt) | |
| input_ids = torch.LongTensor(input_ids) | |
| tokens = torch.zeros((parallel_size * 2, len(input_ids)), dtype=torch.int).cuda() | |
| for i in range(parallel_size * 2): | |
| tokens[i, :] = input_ids | |
| if i % 2 != 0: | |
| tokens[i, 1:-1] = vl_chat_processor.pad_id | |
| inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) | |
| generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() | |
| outputs = None # Initialize outputs for use in the loop | |
| for i in range(image_token_num_per_image): | |
| outputs = mmgpt.language_model.model( | |
| inputs_embeds=inputs_embeds, | |
| use_cache=True, | |
| past_key_values=outputs.past_key_values if i != 0 else None | |
| ) | |
| hidden_states = outputs.last_hidden_state | |
| logits = mmgpt.gen_head(hidden_states[:, -1, :]) | |
| logit_cond = logits[0::2, :] | |
| logit_uncond = logits[1::2, :] | |
| logits = logit_uncond + cfg_weight * (logit_cond - logit_uncond) | |
| probs = torch.softmax(logits / temperature, dim=-1) | |
| next_token = torch.multinomial(probs, num_samples=1) | |
| generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
| next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
| img_embeds = mmgpt.prepare_gen_img_embeds(next_token) | |
| inputs_embeds = img_embeds.unsqueeze(dim=1) | |
| dec = mmgpt.gen_vision_model.decode_code( | |
| generated_tokens.to(dtype=torch.int), | |
| shape=[parallel_size, 8, img_size // patch_size, img_size // patch_size] | |
| ) | |
| dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
| dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
| visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) | |
| visual_img[:, :, :] = dec | |
| os.makedirs('generated_samples', exist_ok=True) | |
| # Create a timestamp | |
| timestamp = time.strftime("%Y%m%d-%H%M%S") | |
| # Sanitize the short_prompt to ensure it's safe for filenames | |
| short_prompt = re.sub(r'\W+', '_', short_prompt)[:50] | |
| # Save images with timestamp and part of the user prompt in the filename | |
| for i in range(parallel_size): | |
| save_path = os.path.join('generated_samples', f"img_{timestamp}_{short_prompt}_{i}.jpg") | |
| PIL.Image.fromarray(visual_img[i]).save(save_path) | |
| def interactive_image_generator(): | |
| print("Welcome to the interactive image generator!") | |
| # Ask for the number of images at the start of the session | |
| while True: | |
| num_images_input = input("How many images would you like to generate per prompt? (Enter a positive integer): ") | |
| if num_images_input.isdigit() and int(num_images_input) > 0: | |
| parallel_size = int(num_images_input) | |
| break | |
| else: | |
| print("Invalid input. Please enter a positive integer.") | |
| while True: | |
| user_input = input("Please describe the image you'd like to generate (or type 'exit' to quit): ") | |
| if user_input.lower() == 'exit': | |
| print("Exiting the image generator. Goodbye!") | |
| break | |
| prompt = create_prompt(user_input) | |
| # Create a sanitized version of user_input for the filename | |
| short_prompt = re.sub(r'\W+', '_', user_input)[:50] | |
| print(f"Generating {parallel_size} image(s) for: '{user_input}'") | |
| generate( | |
| mmgpt=vl_gpt, | |
| vl_chat_processor=vl_chat_processor, | |
| prompt=prompt, | |
| short_prompt=short_prompt, | |
| parallel_size=parallel_size # Pass the user-specified number of images | |
| ) | |
| print("Image generation complete! Check the 'generated_samples' folder for the output.\n") | |
| if __name__ == "__main__": | |
| interactive_image_generator() | |