Spaces:
Runtime error
Runtime error
| # Copyright (c) 2023-2024 DeepSeek. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy of | |
| # this software and associated documentation files (the "Software"), to deal in | |
| # the Software without restriction, including without limitation the rights to | |
| # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
| # the Software, and to permit persons to whom the Software is furnished to do so, | |
| # subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
| # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
| # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| import torch | |
| from transformers import AutoModelForCausalLM | |
| from janus.models import MultiModalityCausalLM, VLChatProcessor | |
| import numpy as np | |
| import os | |
| import PIL.Image | |
| # specify the path to the model | |
| model_path = "deepseek-ai/Janus-1.3B" | |
| vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path) | |
| tokenizer = vl_chat_processor.tokenizer | |
| vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained( | |
| model_path, trust_remote_code=True | |
| ) | |
| vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval() | |
| conversation = [ | |
| { | |
| "role": "User", | |
| "content": "A close-up high-contrast photo of Sydney Opera House sitting next to Eiffel tower, under a blue night sky of roiling energy, exploding yellow stars, and radiating swirls of blue.", | |
| }, | |
| {"role": "Assistant", "content": ""}, | |
| ] | |
| sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts( | |
| conversations=conversation, | |
| sft_format=vl_chat_processor.sft_format, | |
| system_prompt="", | |
| ) | |
| prompt = sft_format + vl_chat_processor.image_start_tag | |
| def generate( | |
| mmgpt: MultiModalityCausalLM, | |
| vl_chat_processor: VLChatProcessor, | |
| prompt: str, | |
| temperature: float = 1, | |
| parallel_size: int = 16, | |
| cfg_weight: float = 5, | |
| image_token_num_per_image: int = 576, | |
| img_size: int = 384, | |
| patch_size: int = 16, | |
| ): | |
| input_ids = vl_chat_processor.tokenizer.encode(prompt) | |
| input_ids = torch.LongTensor(input_ids) | |
| tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda() | |
| for i in range(parallel_size*2): | |
| tokens[i, :] = input_ids | |
| if i % 2 != 0: | |
| tokens[i, 1:-1] = vl_chat_processor.pad_id | |
| inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens) | |
| generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda() | |
| for i in range(image_token_num_per_image): | |
| outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None) | |
| hidden_states = outputs.last_hidden_state | |
| logits = mmgpt.gen_head(hidden_states[:, -1, :]) | |
| logit_cond = logits[0::2, :] | |
| logit_uncond = logits[1::2, :] | |
| logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond) | |
| probs = torch.softmax(logits / temperature, dim=-1) | |
| next_token = torch.multinomial(probs, num_samples=1) | |
| generated_tokens[:, i] = next_token.squeeze(dim=-1) | |
| next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1) | |
| img_embeds = mmgpt.prepare_gen_img_embeds(next_token) | |
| inputs_embeds = img_embeds.unsqueeze(dim=1) | |
| dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size]) | |
| dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1) | |
| dec = np.clip((dec + 1) / 2 * 255, 0, 255) | |
| visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8) | |
| visual_img[:, :, :] = dec | |
| os.makedirs('generated_samples', exist_ok=True) | |
| for i in range(parallel_size): | |
| save_path = os.path.join('generated_samples', "img_{}.jpg".format(i)) | |
| PIL.Image.fromarray(visual_img[i]).save(save_path) | |
| generate( | |
| vl_gpt, | |
| vl_chat_processor, | |
| prompt, | |
| ) |