File size: 2,544 Bytes
26a9031
 
 
 
1f85c85
 
 
26a9031
 
 
 
1f85c85
 
26a9031
1f85c85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26a9031
 
 
 
1f85c85
 
 
 
26a9031
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse

import torch
# from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForCausalLM

app = FastAPI()

# MODEL = "google/flan-t5-small"
# MODEL = "jingyaogong/minimind-v1-small"
MODEL = "tclh123/minimind-v1-small"

# pipe_flan = pipeline("text2text-generation", model=MODEL, trust_remote_code=True)

device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(MODEL, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(MODEL, trust_remote_code=True)
model = model.to(device)
model = model.eval()


def query(message, max_seq_len=512, temperature=0.7, top_k=16):
    prompt = '请问,' + message
    messages = []
    messages.append({"role": "user", "content": prompt})

    stream = True

    # print(messages)
    new_prompt = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )[-(max_seq_len - 1):]

    x = tokenizer(new_prompt).data['input_ids']
    x = (torch.tensor(x, dtype=torch.long, device=device)[None, ...])

    res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature, top_k=top_k, stream=stream)

    try:
        y = next(res_y)
    except StopIteration:
        # print("No answer")
        return ""

    ret = []
    history_idx = 0
    while y != None:
        answer = tokenizer.decode(y[0].tolist())
        if answer and answer[-1] == '�':
            try:
                y = next(res_y)
            except:
                break
            continue
        # print(answer)
        if not len(answer):
            try:
                y = next(res_y)
            except:
                break
            continue

        # print(answer[history_idx:], end='', flush=True)
        ret.append(answer[history_idx:])
        try:
            y = next(res_y)
        except:
            break
        history_idx = len(answer)
        if not stream:
            break

    # print('\n')
    ret.append('\n')

    return ''.join(ret)


@app.get("/infer_t5")
def t5(input):
    # output = pipe_flan(input)
    # return {"output": output[0]["generated_text"]}
    output = query(input)
    return {"output": output}


app.mount("/", StaticFiles(directory="static", html=True), name="static")


@app.get("/")
def index() -> FileResponse:
    return FileResponse(path="/app/static/index.html", media_type="text/html")