tchung1970's picture
Add FLUX.1-dev model attribution and improve project documentation
4bd7b20
raw
history blame
4.96 kB
import gradio as gr
import spaces
import torch
from diffusers import FluxPipeline
import os
# Initialize the model pipeline
@spaces.GPU
def load_model():
"""Load the FLUX.1-dev model for text-to-image generation"""
try:
# Use FLUX.1-dev model for text-to-image
pipe = FluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
torch_dtype=torch.bfloat16
)
pipe = pipe.to("cuda")
return pipe
except Exception as e:
print(f"Error loading model: {e}")
return None
# Global model instance
model_pipe = None
@spaces.GPU
def generate_image(prompt, num_inference_steps=28, guidance_scale=3.5):
"""Generate image using FLUX.1-Kontext-dev with Picasso-style prompt enhancement"""
global model_pipe
if model_pipe is None:
model_pipe = load_model()
if model_pipe is None:
return None, "Failed to load model"
try:
# Enhance prompt for Picasso style
enhanced_prompt = f"{prompt}, in the style of Pablo Picasso, cubist painting, abstract art, geometric shapes, fragmented forms, bold colors"
# Generate image with FLUX parameters
image = model_pipe(
enhanced_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=1024,
height=1024,
generator=torch.Generator("cuda").manual_seed(42)
).images[0]
return image, f"Generated: {enhanced_prompt}"
except Exception as e:
return None, f"Error generating image: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="🎨 FLUX.1-dev-Picasso") as demo:
gr.Markdown("# 🎨 FLUX.1-dev-Picasso")
gr.Markdown("Generate high-quality images in Pablo Picasso's distinctive cubist style using FLUX.1-dev")
with gr.Row():
with gr.Column():
prompt_input = gr.Textbox(
label="Prompt",
placeholder="Describe what you want to see in Picasso's style...",
lines=3
)
with gr.Row():
steps_slider = gr.Slider(
minimum=20, maximum=50, value=28, step=1,
label="Inference Steps",
info="Higher values = better quality but slower generation (20-50)"
)
guidance_slider = gr.Slider(
minimum=1.0, maximum=10.0, value=3.5, step=0.1,
label="Guidance Scale",
info="How closely to follow the prompt (1.0=loose, 10.0=strict)"
)
generate_btn = gr.Button("Generate Picasso-Style Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Generated Image", type="pil")
output_text = gr.Textbox(label="Status", lines=2)
# Example prompts as vertical buttons
gr.Markdown("### πŸ’‘ Example Prompts")
def set_example_1():
return "A portrait of a woman"
def set_example_2():
return "A still life with fruits and bottles"
def set_example_3():
return "A musician playing guitar"
def set_example_4():
return "Two people having a conversation"
def set_example_5():
return "A cityscape with buildings"
with gr.Column():
example_btn_1 = gr.Button("A portrait of a woman", size="sm", scale=0, min_width=0)
example_btn_2 = gr.Button("A still life with fruits and bottles", size="sm", scale=0, min_width=0)
example_btn_3 = gr.Button("A musician playing guitar", size="sm", scale=0, min_width=0)
example_btn_4 = gr.Button("Two people having a conversation", size="sm", scale=0, min_width=0)
example_btn_5 = gr.Button("A cityscape with buildings", size="sm", scale=0, min_width=0)
# Connect example buttons to prompt input
example_btn_1.click(fn=set_example_1, outputs=prompt_input)
example_btn_2.click(fn=set_example_2, outputs=prompt_input)
example_btn_3.click(fn=set_example_3, outputs=prompt_input)
example_btn_4.click(fn=set_example_4, outputs=prompt_input)
example_btn_5.click(fn=set_example_5, outputs=prompt_input)
generate_btn.click(
fn=generate_image,
inputs=[prompt_input, steps_slider, guidance_slider],
outputs=[output_image, output_text]
)
# Attribution section
gr.Markdown("""
---
**Model Attribution:**
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://huggingface.co/black-forest-labs/FLUX.1-pro)
[[non-commercial license]](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md) [[blog]](https://blackforestlabs.ai/announcing-black-forest-labs/) [[model]](https://huggingface.co/black-forest-labs/FLUX.1-dev)
""")
if __name__ == "__main__":
demo.launch()