Spaces:
Running
Running
Commit
·
1acfd2b
1
Parent(s):
ca21317
回到最初
Browse files
app.py
CHANGED
@@ -16,7 +16,6 @@ import os
|
|
16 |
import yfinance as yf
|
17 |
import logging
|
18 |
from datetime import datetime, timedelta
|
19 |
-
from prophet import Prophet
|
20 |
|
21 |
# 設置日誌
|
22 |
logging.basicConfig(level=logging.INFO,
|
@@ -27,9 +26,11 @@ def setup_font():
|
|
27 |
try:
|
28 |
url_font = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_"
|
29 |
response_font = requests.get(url_font)
|
|
|
30 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.ttf') as tmp_file:
|
31 |
tmp_file.write(response_font.content)
|
32 |
tmp_file_path = tmp_file.name
|
|
|
33 |
fm.fontManager.addfont(tmp_file_path)
|
34 |
mpl.rc('font', family='Taipei Sans TC Beta')
|
35 |
except Exception as e:
|
@@ -51,25 +52,30 @@ def fetch_stock_categories():
|
|
51 |
url = "https://tw.stock.yahoo.com/class/"
|
52 |
response = requests.get(url, headers=headers, timeout=10)
|
53 |
response.raise_for_status()
|
|
|
54 |
soup = BeautifulSoup(response.text, 'html.parser')
|
55 |
main_categories = soup.find_all('div', class_='C($c-link-text)')
|
|
|
56 |
data = []
|
57 |
for category in main_categories:
|
58 |
main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
|
59 |
if main_category_name:
|
60 |
main_category_name = main_category_name.text.strip()
|
61 |
sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
|
|
|
62 |
for sub_category in sub_categories:
|
63 |
data.append({
|
64 |
'台股': main_category_name,
|
65 |
'類股': sub_category.text.strip(),
|
66 |
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
67 |
})
|
|
|
68 |
category_dict = {}
|
69 |
for item in data:
|
70 |
if item['台股'] not in category_dict:
|
71 |
category_dict[item['台股']] = []
|
72 |
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
|
|
73 |
return category_dict
|
74 |
except Exception as e:
|
75 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
@@ -78,16 +84,17 @@ def fetch_stock_categories():
|
|
78 |
# 股票預測模型類別
|
79 |
class StockPredictor:
|
80 |
def __init__(self):
|
81 |
-
self.
|
82 |
-
self.prophet_model = None
|
83 |
self.scaler = MinMaxScaler()
|
84 |
-
|
85 |
def prepare_data(self, df, selected_features):
|
86 |
scaled_data = self.scaler.fit_transform(df[selected_features])
|
|
|
87 |
X, y = [], []
|
88 |
for i in range(len(scaled_data) - 1):
|
89 |
X.append(scaled_data[i])
|
90 |
y.append(scaled_data[i+1])
|
|
|
91 |
return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
|
92 |
|
93 |
def build_model(self, input_shape):
|
@@ -103,8 +110,8 @@ class StockPredictor:
|
|
103 |
|
104 |
def train(self, df, selected_features):
|
105 |
X, y = self.prepare_data(df, selected_features)
|
106 |
-
self.
|
107 |
-
history = self.
|
108 |
X, y,
|
109 |
epochs=50,
|
110 |
batch_size=32,
|
@@ -116,18 +123,18 @@ class StockPredictor:
|
|
116 |
def predict(self, last_data, n_days):
|
117 |
predictions = []
|
118 |
current_data = last_data.copy()
|
|
|
119 |
for _ in range(n_days):
|
120 |
-
next_day = self.
|
121 |
predictions.append(next_day[0])
|
|
|
122 |
current_data = current_data.flatten()
|
123 |
current_data[:len(next_day[0])] = next_day[0]
|
124 |
current_data = current_data.reshape(1, -1)
|
|
|
125 |
return np.array(predictions)
|
126 |
-
|
127 |
-
def train_prophet(self, df_prophet):
|
128 |
-
self.prophet_model = Prophet()
|
129 |
-
self.prophet_model.fit(df_prophet)
|
130 |
|
|
|
131 |
def update_stocks(category):
|
132 |
if not category or category not in category_dict:
|
133 |
return []
|
@@ -137,8 +144,10 @@ def get_stock_items(url):
|
|
137 |
try:
|
138 |
response = requests.get(url, headers=headers, timeout=10)
|
139 |
response.raise_for_status()
|
|
|
140 |
soup = BeautifulSoup(response.text, 'html.parser')
|
141 |
stock_items = soup.find_all('li', class_='List(n)')
|
|
|
142 |
stocks_dict = {}
|
143 |
for item in stock_items:
|
144 |
stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
|
@@ -148,6 +157,7 @@ def get_stock_items(url):
|
|
148 |
display_code = full_code.split('.')[0]
|
149 |
display_name = f"{stock_name.text.strip()}{display_code}"
|
150 |
stocks_dict[display_name] = full_code
|
|
|
151 |
return stocks_dict
|
152 |
except Exception as e:
|
153 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
@@ -169,8 +179,10 @@ def update_stock(category, stock):
|
|
169 |
stock_plot: gr.update(value=None),
|
170 |
status_output: gr.update(value="")
|
171 |
}
|
|
|
172 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
173 |
if item['類股'] == stock), None)
|
|
|
174 |
if url:
|
175 |
stock_items = get_stock_items(url)
|
176 |
return {
|
@@ -184,84 +196,65 @@ def update_stock(category, stock):
|
|
184 |
status_output: gr.update(value="")
|
185 |
}
|
186 |
|
187 |
-
def predict_stock(category, stock, stock_item, period, selected_features
|
188 |
if not all([category, stock, stock_item]):
|
189 |
return gr.update(value=None), "請選擇產業類別、類股和股票"
|
|
|
190 |
try:
|
191 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
192 |
-
|
193 |
if not url:
|
194 |
return gr.update(value=None), "無法獲取類股網址"
|
|
|
195 |
stock_items = get_stock_items(url)
|
196 |
stock_code = stock_items.get(stock_item, "")
|
|
|
197 |
if not stock_code:
|
198 |
return gr.update(value=None), "無法獲取股票代碼"
|
199 |
|
200 |
-
#
|
201 |
df = yf.download(stock_code, period=period)
|
202 |
if df.empty:
|
203 |
raise ValueError("無法獲取股票數據")
|
204 |
|
|
|
205 |
predictor = StockPredictor()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
if model_type == "LSTM":
|
208 |
-
predictor.train(df, selected_features)
|
209 |
-
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
210 |
-
predictions = predictor.predict(last_data[0], 5)
|
211 |
-
last_original = df[selected_features].iloc[-1].values
|
212 |
-
predictions_original = predictor.scaler.inverse_transform(
|
213 |
-
np.vstack([last_data, predictions])
|
214 |
-
)
|
215 |
-
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
216 |
-
|
217 |
-
elif model_type == "Prophet":
|
218 |
-
target_feature = selected_features[0] # 使用第一個選擇的特徵
|
219 |
-
df_prophet = df.reset_index()
|
220 |
-
df_prophet = df_prophet[['Date', target_feature]].rename(
|
221 |
-
columns={'Date': 'ds', target_feature: 'y'})
|
222 |
-
|
223 |
-
predictor.train_prophet(df_prophet)
|
224 |
-
future_dates = pd.date_range(
|
225 |
-
start=df_prophet['ds'].iloc[-1] + pd.Timedelta(days=1),
|
226 |
-
periods=5,
|
227 |
-
freq='D'
|
228 |
-
)
|
229 |
-
future = pd.DataFrame({'ds': future_dates})
|
230 |
-
forecast = predictor.prophet_model.predict(future)
|
231 |
-
all_predictions = forecast['yhat'].values
|
232 |
-
|
233 |
# 創建日期索引
|
234 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
235 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
236 |
|
237 |
# 繪圖
|
238 |
fig, ax = plt.subplots(figsize=(14, 7))
|
|
|
|
|
239 |
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
for
|
244 |
-
ax.
|
245 |
-
|
246 |
-
|
247 |
-
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
248 |
-
textcoords="offset points", xytext=(0,10),
|
249 |
-
ha='center', va='bottom')
|
250 |
-
elif model_type == "Prophet":
|
251 |
-
ax.plot(date_labels[1:], all_predictions, label=f'預測{target_feature}',
|
252 |
-
marker='o', color='#FF9999', linewidth=2)
|
253 |
-
for j, value in enumerate(all_predictions):
|
254 |
-
ax.annotate(f'{value:.2f}', (date_labels[j+1], value),
|
255 |
-
textcoords="offset points", xytext=(0,10),
|
256 |
-
ha='center', va='bottom')
|
257 |
|
258 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
259 |
ax.set_xlabel('日期', labelpad=10)
|
260 |
ax.set_ylabel('股價', labelpad=10)
|
261 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
262 |
ax.grid(True, linestyle='--', alpha=0.7)
|
263 |
-
plt.tight_layout()
|
264 |
|
|
|
265 |
return gr.update(value=fig), "預測成功"
|
266 |
|
267 |
except Exception as e:
|
@@ -303,33 +296,31 @@ with gr.Blocks() as demo:
|
|
303 |
label="選擇要用於預測的特徵",
|
304 |
value=['Open', 'Close']
|
305 |
)
|
306 |
-
model_type_radio = gr.Radio(
|
307 |
-
choices=["LSTM", "Prophet"],
|
308 |
-
label="選擇模型類型",
|
309 |
-
value="LSTM"
|
310 |
-
)
|
311 |
predict_button = gr.Button("開始預測", variant="primary")
|
312 |
status_output = gr.Textbox(label="狀態", interactive=False)
|
313 |
-
|
314 |
-
|
315 |
-
|
|
|
316 |
# 事件綁定
|
317 |
category_dropdown.change(
|
318 |
update_category,
|
319 |
inputs=[category_dropdown],
|
320 |
outputs=[stock_dropdown, stock_item_dropdown, stock_plot, status_output]
|
321 |
)
|
|
|
322 |
stock_dropdown.change(
|
323 |
update_stock,
|
324 |
inputs=[category_dropdown, stock_dropdown],
|
325 |
outputs=[stock_item_dropdown, stock_plot, status_output]
|
326 |
)
|
|
|
327 |
predict_button.click(
|
328 |
predict_stock,
|
329 |
-
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown,
|
330 |
-
period_dropdown, features_checkbox, model_type_radio],
|
331 |
outputs=[stock_plot, status_output]
|
332 |
)
|
333 |
-
|
|
|
334 |
if __name__ == "__main__":
|
335 |
-
demo.launch(share=False)
|
|
|
16 |
import yfinance as yf
|
17 |
import logging
|
18 |
from datetime import datetime, timedelta
|
|
|
19 |
|
20 |
# 設置日誌
|
21 |
logging.basicConfig(level=logging.INFO,
|
|
|
26 |
try:
|
27 |
url_font = "https://drive.google.com/uc?id=1eGAsTN1HBpJAkeVM57_C7ccp7hbgSz3_"
|
28 |
response_font = requests.get(url_font)
|
29 |
+
|
30 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.ttf') as tmp_file:
|
31 |
tmp_file.write(response_font.content)
|
32 |
tmp_file_path = tmp_file.name
|
33 |
+
|
34 |
fm.fontManager.addfont(tmp_file_path)
|
35 |
mpl.rc('font', family='Taipei Sans TC Beta')
|
36 |
except Exception as e:
|
|
|
52 |
url = "https://tw.stock.yahoo.com/class/"
|
53 |
response = requests.get(url, headers=headers, timeout=10)
|
54 |
response.raise_for_status()
|
55 |
+
|
56 |
soup = BeautifulSoup(response.text, 'html.parser')
|
57 |
main_categories = soup.find_all('div', class_='C($c-link-text)')
|
58 |
+
|
59 |
data = []
|
60 |
for category in main_categories:
|
61 |
main_category_name = category.find('h2', class_="Fw(b) Fz(24px) Lh(32px)")
|
62 |
if main_category_name:
|
63 |
main_category_name = main_category_name.text.strip()
|
64 |
sub_categories = category.find_all('a', class_='Fz(16px) Lh(1.5) C($c-link-text) C($c-active-text):h Fw(b):h Td(n)')
|
65 |
+
|
66 |
for sub_category in sub_categories:
|
67 |
data.append({
|
68 |
'台股': main_category_name,
|
69 |
'類股': sub_category.text.strip(),
|
70 |
'網址': "https://tw.stock.yahoo.com" + sub_category['href']
|
71 |
})
|
72 |
+
|
73 |
category_dict = {}
|
74 |
for item in data:
|
75 |
if item['台股'] not in category_dict:
|
76 |
category_dict[item['台股']] = []
|
77 |
category_dict[item['台股']].append({'類股': item['類股'], '網址': item['網址']})
|
78 |
+
|
79 |
return category_dict
|
80 |
except Exception as e:
|
81 |
logging.error(f"獲取股票類別失敗: {str(e)}")
|
|
|
84 |
# 股票預測模型類別
|
85 |
class StockPredictor:
|
86 |
def __init__(self):
|
87 |
+
self.model = None
|
|
|
88 |
self.scaler = MinMaxScaler()
|
89 |
+
|
90 |
def prepare_data(self, df, selected_features):
|
91 |
scaled_data = self.scaler.fit_transform(df[selected_features])
|
92 |
+
|
93 |
X, y = [], []
|
94 |
for i in range(len(scaled_data) - 1):
|
95 |
X.append(scaled_data[i])
|
96 |
y.append(scaled_data[i+1])
|
97 |
+
|
98 |
return np.array(X).reshape(-1, 1, len(selected_features)), np.array(y)
|
99 |
|
100 |
def build_model(self, input_shape):
|
|
|
110 |
|
111 |
def train(self, df, selected_features):
|
112 |
X, y = self.prepare_data(df, selected_features)
|
113 |
+
self.model = self.build_model((1, X.shape[2]))
|
114 |
+
history = self.model.fit(
|
115 |
X, y,
|
116 |
epochs=50,
|
117 |
batch_size=32,
|
|
|
123 |
def predict(self, last_data, n_days):
|
124 |
predictions = []
|
125 |
current_data = last_data.copy()
|
126 |
+
|
127 |
for _ in range(n_days):
|
128 |
+
next_day = self.model.predict(current_data.reshape(1, 1, -1), verbose=0)
|
129 |
predictions.append(next_day[0])
|
130 |
+
|
131 |
current_data = current_data.flatten()
|
132 |
current_data[:len(next_day[0])] = next_day[0]
|
133 |
current_data = current_data.reshape(1, -1)
|
134 |
+
|
135 |
return np.array(predictions)
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
# Gradio界面函數
|
138 |
def update_stocks(category):
|
139 |
if not category or category not in category_dict:
|
140 |
return []
|
|
|
144 |
try:
|
145 |
response = requests.get(url, headers=headers, timeout=10)
|
146 |
response.raise_for_status()
|
147 |
+
|
148 |
soup = BeautifulSoup(response.text, 'html.parser')
|
149 |
stock_items = soup.find_all('li', class_='List(n)')
|
150 |
+
|
151 |
stocks_dict = {}
|
152 |
for item in stock_items:
|
153 |
stock_name = item.find('div', class_='Lh(20px) Fw(600) Fz(16px) Ell')
|
|
|
157 |
display_code = full_code.split('.')[0]
|
158 |
display_name = f"{stock_name.text.strip()}{display_code}"
|
159 |
stocks_dict[display_name] = full_code
|
160 |
+
|
161 |
return stocks_dict
|
162 |
except Exception as e:
|
163 |
logging.error(f"獲取股票項目失敗: {str(e)}")
|
|
|
179 |
stock_plot: gr.update(value=None),
|
180 |
status_output: gr.update(value="")
|
181 |
}
|
182 |
+
|
183 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
184 |
if item['類股'] == stock), None)
|
185 |
+
|
186 |
if url:
|
187 |
stock_items = get_stock_items(url)
|
188 |
return {
|
|
|
196 |
status_output: gr.update(value="")
|
197 |
}
|
198 |
|
199 |
+
def predict_stock(category, stock, stock_item, period, selected_features):
|
200 |
if not all([category, stock, stock_item]):
|
201 |
return gr.update(value=None), "請選擇產業類別、類股和股票"
|
202 |
+
|
203 |
try:
|
204 |
url = next((item['網址'] for item in category_dict.get(category, [])
|
205 |
+
if item['類股'] == stock), None)
|
206 |
if not url:
|
207 |
return gr.update(value=None), "無法獲取類股網址"
|
208 |
+
|
209 |
stock_items = get_stock_items(url)
|
210 |
stock_code = stock_items.get(stock_item, "")
|
211 |
+
|
212 |
if not stock_code:
|
213 |
return gr.update(value=None), "無法獲取股票代碼"
|
214 |
|
215 |
+
# 下載股票數據,根據用戶選擇的時間範圍
|
216 |
df = yf.download(stock_code, period=period)
|
217 |
if df.empty:
|
218 |
raise ValueError("無法獲取股票數據")
|
219 |
|
220 |
+
# 預測
|
221 |
predictor = StockPredictor()
|
222 |
+
predictor.train(df, selected_features)
|
223 |
+
|
224 |
+
last_data = predictor.scaler.transform(df[selected_features].iloc[-1:].values)
|
225 |
+
predictions = predictor.predict(last_data[0], 5)
|
226 |
+
|
227 |
+
# 反轉預測結果
|
228 |
+
last_original = df[selected_features].iloc[-1].values
|
229 |
+
predictions_original = predictor.scaler.inverse_transform(
|
230 |
+
np.vstack([last_data, predictions])
|
231 |
+
)
|
232 |
+
all_predictions = np.vstack([last_original, predictions_original[1:]])
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
# 創建日期索引
|
235 |
dates = [datetime.now() + timedelta(days=i) for i in range(6)]
|
236 |
date_labels = [d.strftime('%m/%d') for d in dates]
|
237 |
|
238 |
# 繪圖
|
239 |
fig, ax = plt.subplots(figsize=(14, 7))
|
240 |
+
colors = ['#FF9999', '#66B2FF']
|
241 |
+
labels = [f'預測{feature}' for feature in selected_features]
|
242 |
|
243 |
+
for i, (label, color) in enumerate(zip(labels, colors)):
|
244 |
+
ax.plot(date_labels, all_predictions[:, i], label=label,
|
245 |
+
marker='o', color=color, linewidth=2)
|
246 |
+
for j, value in enumerate(all_predictions[:, i]):
|
247 |
+
ax.annotate(f'{value:.2f}', (date_labels[j], value),
|
248 |
+
textcoords="offset points", xytext=(0,10),
|
249 |
+
ha='center', va='bottom')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
ax.set_title(f'{stock_item} 股價預測 (未來5天)', pad=20, fontsize=14)
|
252 |
ax.set_xlabel('日期', labelpad=10)
|
253 |
ax.set_ylabel('股價', labelpad=10)
|
254 |
ax.legend(loc='upper left', bbox_to_anchor=(1, 1))
|
255 |
ax.grid(True, linestyle='--', alpha=0.7)
|
|
|
256 |
|
257 |
+
plt.tight_layout()
|
258 |
return gr.update(value=fig), "預測成功"
|
259 |
|
260 |
except Exception as e:
|
|
|
296 |
label="選擇要用於預測的特徵",
|
297 |
value=['Open', 'Close']
|
298 |
)
|
|
|
|
|
|
|
|
|
|
|
299 |
predict_button = gr.Button("開始預測", variant="primary")
|
300 |
status_output = gr.Textbox(label="狀態", interactive=False)
|
301 |
+
|
302 |
+
with gr.Row():
|
303 |
+
stock_plot = gr.Plot(label="股價預測圖")
|
304 |
+
|
305 |
# 事件綁定
|
306 |
category_dropdown.change(
|
307 |
update_category,
|
308 |
inputs=[category_dropdown],
|
309 |
outputs=[stock_dropdown, stock_item_dropdown, stock_plot, status_output]
|
310 |
)
|
311 |
+
|
312 |
stock_dropdown.change(
|
313 |
update_stock,
|
314 |
inputs=[category_dropdown, stock_dropdown],
|
315 |
outputs=[stock_item_dropdown, stock_plot, status_output]
|
316 |
)
|
317 |
+
|
318 |
predict_button.click(
|
319 |
predict_stock,
|
320 |
+
inputs=[category_dropdown, stock_dropdown, stock_item_dropdown, period_dropdown, features_checkbox],
|
|
|
321 |
outputs=[stock_plot, status_output]
|
322 |
)
|
323 |
+
|
324 |
+
# 啟動應用
|
325 |
if __name__ == "__main__":
|
326 |
+
demo.launch(share=False)
|