Spaces:
Runtime error
Runtime error
File size: 10,180 Bytes
9c5ec50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
#!/usr/bin/env python
import os
import io
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, regularizers
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from google.cloud import storage
from huggingface_hub import hf_hub_download, notebook_login, login
from PIL import Image
import gradio as gr
import collections
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
# Access and validate HF token
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
else:
# Check if token exists in default location
token_path = os.path.expanduser('~/.huggingface/token')
if os.path.exists(token_path):
with open(token_path) as f:
login(token=f.read().strip())
else:
print("Please set HF_TOKEN environment variable or store your token in ~/.huggingface/token")
exit(1)
# ======================
# CONSTANTS & CONFIGURATION
# ======================
SCIN_GCP_PROJECT = 'dx-scin-public'
SCIN_GCS_BUCKET_NAME = 'dx-scin-public-data'
SCIN_GCS_CASES_CSV = 'dataset/scin_cases.csv'
SCIN_GCS_LABELS_CSV = 'dataset/scin_labels.csv'
SCIN_HF_MODEL_NAME = 'google/derm-foundation'
SCIN_HF_EMBEDDING_FILE = 'scin_dataset_precomputed_embeddings.npz'
# The 10 conditions we want to predict
CONDITIONS_TO_PREDICT = [
'Eczema',
'Allergic Contact Dermatitis',
'Insect Bite',
'Urticaria',
'Psoriasis',
'Folliculitis',
'Irritant Contact Dermatitis',
'Tinea',
'Herpes Zoster',
'Drug Rash'
]
# ======================
# HELPER FUNCTIONS FOR DATA LOADING
# ======================
def initialize_df_with_metadata(bucket, csv_path):
csv_bytes = bucket.blob(csv_path).download_as_string()
df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
df['case_id'] = df['case_id'].astype(str)
return df
def augment_metadata_with_labels(df, bucket, csv_path):
csv_bytes = bucket.blob(csv_path).download_as_string()
labels_df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
labels_df['case_id'] = labels_df['case_id'].astype(str)
merged_df = pd.merge(df, labels_df, on='case_id')
return merged_df
def load_embeddings_from_file(repo_id, object_name):
file_path = hf_hub_download(repo_id=repo_id, filename=object_name, local_dir='./')
embeddings = {}
with open(file_path, 'rb') as f:
npz_file = np.load(f, allow_pickle=True)
for key, value in npz_file.items():
embeddings[key] = value
return embeddings
# ======================
# DATA PREPARATION FUNCTION
# ======================
def prepare_data(df, embeddings):
MINIMUM_CONFIDENCE = 0 # Adjust this if needed.
X = []
y = []
poor_image_quality_counter = 0
missing_embedding_counter = 0
not_in_condition_counter = 0
condition_confidence_low_counter = 0
for row in df.itertuples():
# Check if the image is marked as having sufficient quality.
if getattr(row, 'dermatologist_gradable_for_skin_condition_1', None) != 'DEFAULT_YES_IMAGE_QUALITY_SUFFICIENT':
poor_image_quality_counter += 1
continue
# Parse the labels and confidences.
try:
labels = eval(getattr(row, 'dermatologist_skin_condition_on_label_name', '[]'))
confidences = eval(getattr(row, 'dermatologist_skin_condition_confidence', '[]'))
except Exception as e:
continue
row_labels = []
for label, conf in zip(labels, confidences):
if label not in CONDITIONS_TO_PREDICT:
not_in_condition_counter += 1
continue
if conf < MINIMUM_CONFIDENCE:
condition_confidence_low_counter += 1
continue
row_labels.append(label)
# For each image associated with this case, add its embedding and labels.
for image_path in [getattr(row, 'image_1_path', None),
getattr(row, 'image_2_path', None),
getattr(row, 'image_3_path', None)]:
if pd.isna(image_path) or image_path is None:
continue
if image_path not in embeddings:
missing_embedding_counter += 1
continue
X.append(embeddings[image_path])
y.append(row_labels)
print(f'Poor image quality count: {poor_image_quality_counter}')
print(f'Missing embedding count: {missing_embedding_counter}')
print(f'Condition not in list count: {not_in_condition_counter}')
print(f'Excluded due to low confidence count: {condition_confidence_low_counter}')
return X, y
# ======================
# MODEL BUILDING FUNCTION
# ======================
def build_model(input_dim, output_dim, weight_decay=1e-4):
inputs = tf.keras.Input(shape=(input_dim,))
hidden = layers.Dense(256, activation="relu",
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay))(inputs)
hidden = layers.Dropout(0.1)(hidden)
hidden = layers.Dense(128, activation="relu",
kernel_regularizer=regularizers.l2(weight_decay),
bias_regularizer=regularizers.l2(weight_decay))(hidden)
hidden = layers.Dropout(0.1)(hidden)
output = layers.Dense(output_dim, activation="sigmoid")(hidden)
model = tf.keras.Model(inputs, output)
model.compile(loss="binary_crossentropy",
optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4))
return model
# ======================
# MAIN FUNCTION & GRADIO INTERFACE
# ======================
def main():
# Connect to the Google Cloud Storage bucket.
storage_client = storage.Client(SCIN_GCP_PROJECT)
bucket = storage_client.bucket(SCIN_GCS_BUCKET_NAME)
# Load SCIN dataset CSVs and merge them.
df_cases = initialize_df_with_metadata(bucket, SCIN_GCS_CASES_CSV)
df_full = augment_metadata_with_labels(df_cases, bucket, SCIN_GCS_LABELS_CSV)
df_full.set_index('case_id', inplace=True)
# Load precomputed embeddings from Hugging Face.
print("Loading embeddings...")
embeddings = load_embeddings_from_file(SCIN_HF_MODEL_NAME, SCIN_HF_EMBEDDING_FILE)
# Prepare the training data.
print("Preparing training data...")
X, y = prepare_data(df_full, embeddings)
X = np.array(X)
# Convert the list of label lists to binary arrays.
mlb = MultiLabelBinarizer(classes=CONDITIONS_TO_PREDICT)
y_bin = mlb.fit_transform(y)
# Split the data into train and test sets.
X_train, X_test, y_train, y_test = train_test_split(X, y_bin, test_size=0.2, random_state=42)
# Build the model.
model = build_model(input_dim=6144, output_dim=len(CONDITIONS_TO_PREDICT))
# If a saved model exists, load it; otherwise, train and save it.
model_file = "model.h5"
if os.path.exists(model_file):
print("Loading existing model from", model_file)
model = tf.keras.models.load_model(model_file)
else:
print("Training model... This may take a few minutes.")
train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(32)
model.fit(train_ds, validation_data=test_ds, epochs=15)
model.save(model_file)
# Extract a list of case IDs for dropdown
case_ids = list(df_full.index)
def predict_case(case_id: str):
"""Fetch images and predictions for a given case ID."""
if case_id not in df_full.index:
return [], "Case ID not found!", "N/A", "N/A"
row = df_full.loc[case_id]
image_paths = [row.get('image_1_path'), row.get('image_2_path'), row.get('image_3_path')]
images, predictions_text = [], []
# Get Dermatologist's Labels
dermatologist_conditions = row.get('dermatologist_skin_condition_on_label_name', "N/A")
dermatologist_confidence = row.get('dermatologist_skin_condition_confidence', "N/A")
if isinstance(dermatologist_conditions, str):
try:
dermatologist_conditions = eval(dermatologist_conditions)
dermatologist_confidence = eval(dermatologist_confidence)
except:
pass
# Process images & generate predictions
for path in image_paths:
if isinstance(path, str) and (path in embeddings):
try:
img_bytes = bucket.blob(path).download_as_string()
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
images.append(img)
except:
continue
# Model Prediction
emb = np.expand_dims(embeddings[path], axis=0)
pred = model.predict(emb)[0]
pred_dict = {cond: round(float(prob), 3) for cond, prob in zip(mlb.classes_, pred)}
predictions_text.append(str(pred_dict))
# Format the output
predictions_text = "\n".join(predictions_text) if predictions_text else "No predictions available."
dermatologist_conditions = str(dermatologist_conditions)
dermatologist_confidence = str(dermatologist_confidence)
return images, predictions_text, dermatologist_conditions, dermatologist_confidence
# Create the Gradio Interface with a Dropdown
iface = gr.Interface(
fn=predict_case,
inputs=gr.Dropdown(choices=case_ids, label="Select a Case ID"),
outputs=[
gr.Gallery(label="Case Images"),
gr.Textbox(label="Model's Predictions"),
gr.Textbox(label="Dermatologist's Skin Conditions"),
gr.Textbox(label="Dermatologist's Confidence Ratings")
],
title="Derm Foundation Skin Conditions Explorer",
description="Select a Case ID from the dropdown to view images and predictions."
)
iface.launch(share=True)
if __name__ == "__main__":
main()
|