File size: 10,180 Bytes
9c5ec50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
import os
import io
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers, regularizers
from sklearn.preprocessing import MultiLabelBinarizer
from sklearn.model_selection import train_test_split
from google.cloud import storage
from huggingface_hub import hf_hub_download, notebook_login, login
from PIL import Image
import gradio as gr
import collections
from dotenv import load_dotenv

# Load environment variables from .env file
load_dotenv()

# Access and validate HF token
hf_token = os.getenv('HF_TOKEN')
if hf_token:
    login(token=hf_token)
else:
    # Check if token exists in default location
    token_path = os.path.expanduser('~/.huggingface/token')
    if os.path.exists(token_path):
        with open(token_path) as f:
            login(token=f.read().strip())
    else:
        print("Please set HF_TOKEN environment variable or store your token in ~/.huggingface/token")
        exit(1)

# ======================
# CONSTANTS & CONFIGURATION
# ======================

SCIN_GCP_PROJECT = 'dx-scin-public'
SCIN_GCS_BUCKET_NAME = 'dx-scin-public-data'
SCIN_GCS_CASES_CSV = 'dataset/scin_cases.csv'
SCIN_GCS_LABELS_CSV = 'dataset/scin_labels.csv'

SCIN_HF_MODEL_NAME = 'google/derm-foundation'
SCIN_HF_EMBEDDING_FILE = 'scin_dataset_precomputed_embeddings.npz'

# The 10 conditions we want to predict
CONDITIONS_TO_PREDICT = [
    'Eczema',
    'Allergic Contact Dermatitis',
    'Insect Bite',
    'Urticaria',
    'Psoriasis',
    'Folliculitis',
    'Irritant Contact Dermatitis',
    'Tinea',
    'Herpes Zoster',
    'Drug Rash'
]

# ======================
# HELPER FUNCTIONS FOR DATA LOADING
# ======================

def initialize_df_with_metadata(bucket, csv_path):
    csv_bytes = bucket.blob(csv_path).download_as_string()
    df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
    df['case_id'] = df['case_id'].astype(str)
    return df

def augment_metadata_with_labels(df, bucket, csv_path):
    csv_bytes = bucket.blob(csv_path).download_as_string()
    labels_df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
    labels_df['case_id'] = labels_df['case_id'].astype(str)
    merged_df = pd.merge(df, labels_df, on='case_id')
    return merged_df

def load_embeddings_from_file(repo_id, object_name):
    file_path = hf_hub_download(repo_id=repo_id, filename=object_name, local_dir='./')
    embeddings = {}
    with open(file_path, 'rb') as f:
        npz_file = np.load(f, allow_pickle=True)
        for key, value in npz_file.items():
            embeddings[key] = value
    return embeddings

# ======================
# DATA PREPARATION FUNCTION
# ======================

def prepare_data(df, embeddings):
    MINIMUM_CONFIDENCE = 0  # Adjust this if needed.
    X = []
    y = []
    poor_image_quality_counter = 0
    missing_embedding_counter = 0
    not_in_condition_counter = 0
    condition_confidence_low_counter = 0

    for row in df.itertuples():
        # Check if the image is marked as having sufficient quality.
        if getattr(row, 'dermatologist_gradable_for_skin_condition_1', None) != 'DEFAULT_YES_IMAGE_QUALITY_SUFFICIENT':
            poor_image_quality_counter += 1
            continue

        # Parse the labels and confidences.
        try:
            labels = eval(getattr(row, 'dermatologist_skin_condition_on_label_name', '[]'))
            confidences = eval(getattr(row, 'dermatologist_skin_condition_confidence', '[]'))
        except Exception as e:
            continue

        row_labels = []
        for label, conf in zip(labels, confidences):
            if label not in CONDITIONS_TO_PREDICT:
                not_in_condition_counter += 1
                continue
            if conf < MINIMUM_CONFIDENCE:
                condition_confidence_low_counter += 1
                continue
            row_labels.append(label)

        # For each image associated with this case, add its embedding and labels.
        for image_path in [getattr(row, 'image_1_path', None),
                           getattr(row, 'image_2_path', None),
                           getattr(row, 'image_3_path', None)]:
            if pd.isna(image_path) or image_path is None:
                continue
            if image_path not in embeddings:
                missing_embedding_counter += 1
                continue
            X.append(embeddings[image_path])
            y.append(row_labels)
    
    print(f'Poor image quality count: {poor_image_quality_counter}')
    print(f'Missing embedding count: {missing_embedding_counter}')
    print(f'Condition not in list count: {not_in_condition_counter}')
    print(f'Excluded due to low confidence count: {condition_confidence_low_counter}')
    return X, y

# ======================
# MODEL BUILDING FUNCTION
# ======================

def build_model(input_dim, output_dim, weight_decay=1e-4):
    inputs = tf.keras.Input(shape=(input_dim,))
    hidden = layers.Dense(256, activation="relu",
                          kernel_regularizer=regularizers.l2(weight_decay),
                          bias_regularizer=regularizers.l2(weight_decay))(inputs)
    hidden = layers.Dropout(0.1)(hidden)
    hidden = layers.Dense(128, activation="relu",
                          kernel_regularizer=regularizers.l2(weight_decay),
                          bias_regularizer=regularizers.l2(weight_decay))(hidden)
    hidden = layers.Dropout(0.1)(hidden)
    output = layers.Dense(output_dim, activation="sigmoid")(hidden)
    model = tf.keras.Model(inputs, output)
    model.compile(loss="binary_crossentropy",
                  optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4))
    return model

# ======================
# MAIN FUNCTION & GRADIO INTERFACE
# ======================

def main():
    # Connect to the Google Cloud Storage bucket.
    storage_client = storage.Client(SCIN_GCP_PROJECT)
    bucket = storage_client.bucket(SCIN_GCS_BUCKET_NAME)
    
    # Load SCIN dataset CSVs and merge them.
    df_cases = initialize_df_with_metadata(bucket, SCIN_GCS_CASES_CSV)
    df_full = augment_metadata_with_labels(df_cases, bucket, SCIN_GCS_LABELS_CSV)
    df_full.set_index('case_id', inplace=True)
    
    # Load precomputed embeddings from Hugging Face.
    print("Loading embeddings...")
    embeddings = load_embeddings_from_file(SCIN_HF_MODEL_NAME, SCIN_HF_EMBEDDING_FILE)
    
    # Prepare the training data.
    print("Preparing training data...")
    X, y = prepare_data(df_full, embeddings)
    X = np.array(X)
    # Convert the list of label lists to binary arrays.
    mlb = MultiLabelBinarizer(classes=CONDITIONS_TO_PREDICT)
    y_bin = mlb.fit_transform(y)
    
    # Split the data into train and test sets.
    X_train, X_test, y_train, y_test = train_test_split(X, y_bin, test_size=0.2, random_state=42)
    
    # Build the model.
    model = build_model(input_dim=6144, output_dim=len(CONDITIONS_TO_PREDICT))
    
    # If a saved model exists, load it; otherwise, train and save it.
    model_file = "model.h5"
    if os.path.exists(model_file):
        print("Loading existing model from", model_file)
        model = tf.keras.models.load_model(model_file)
    else:
        print("Training model... This may take a few minutes.")
        train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).batch(32)
        test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(32)
        model.fit(train_ds, validation_data=test_ds, epochs=15)
        model.save(model_file)
    
    # Extract a list of case IDs for dropdown
    case_ids = list(df_full.index)

    def predict_case(case_id: str):
        """Fetch images and predictions for a given case ID."""
        if case_id not in df_full.index:
            return [], "Case ID not found!", "N/A", "N/A"

        row = df_full.loc[case_id]
        image_paths = [row.get('image_1_path'), row.get('image_2_path'), row.get('image_3_path')]
        images, predictions_text = [], []

        # Get Dermatologist's Labels
        dermatologist_conditions = row.get('dermatologist_skin_condition_on_label_name', "N/A")
        dermatologist_confidence = row.get('dermatologist_skin_condition_confidence', "N/A")

        if isinstance(dermatologist_conditions, str):
            try:
                dermatologist_conditions = eval(dermatologist_conditions)
                dermatologist_confidence = eval(dermatologist_confidence)
            except:
                pass

        # Process images & generate predictions
        for path in image_paths:
            if isinstance(path, str) and (path in embeddings):
                try:
                    img_bytes = bucket.blob(path).download_as_string()
                    img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
                    images.append(img)
                except:
                    continue

                # Model Prediction
                emb = np.expand_dims(embeddings[path], axis=0)
                pred = model.predict(emb)[0]
                pred_dict = {cond: round(float(prob), 3) for cond, prob in zip(mlb.classes_, pred)}
                predictions_text.append(str(pred_dict))

        # Format the output
        predictions_text = "\n".join(predictions_text) if predictions_text else "No predictions available."
        dermatologist_conditions = str(dermatologist_conditions)
        dermatologist_confidence = str(dermatologist_confidence)

        return images, predictions_text, dermatologist_conditions, dermatologist_confidence

    # Create the Gradio Interface with a Dropdown
    iface = gr.Interface(
        fn=predict_case,
        inputs=gr.Dropdown(choices=case_ids, label="Select a Case ID"),
        outputs=[
            gr.Gallery(label="Case Images"),
            gr.Textbox(label="Model's Predictions"),
            gr.Textbox(label="Dermatologist's Skin Conditions"),
            gr.Textbox(label="Dermatologist's Confidence Ratings")
        ],
        title="Derm Foundation Skin Conditions Explorer",
        description="Select a Case ID from the dropdown to view images and predictions."
    )

    iface.launch(share=True)


if __name__ == "__main__":
    main()