Spaces:
Runtime error
Runtime error
import logging | |
from auto_gptq import AutoGPTQForCausalLM | |
from huggingface_hub import hf_hub_download | |
# from langchain.llms import LlamaCpp | |
from langchain_community.llms import LlamaCpp | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
LlamaForCausalLM, | |
LlamaTokenizer, | |
) | |
from langchain_community.llms import HuggingFacePipeline | |
from langchain.callbacks.manager import CallbackManager | |
from transformers import GenerationConfig, pipeline | |
import torch | |
import os | |
from app.settings import Config | |
conf = Config() | |
logger = logging.getLogger(__name__) | |
MODELS_PATH = conf.MODELS_PATH | |
CONTEXT_WINDOW_SIZE = 2048 | |
MAX_NEW_TOKENS = 2048 | |
N_BATCH= 512 | |
N_GPU_LAYERS = 1 | |
CACHE_DIR = conf.CACHE_DIR #"./models/" | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = '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' | |
def load_quantized_model_gguf_ggml(model_id, model_basename, device_type, logging): | |
try: | |
logging.info("Using Llamacpp for GGUF/GGML quantized models") | |
model_path = hf_hub_download( | |
repo_id=model_id, | |
filename=model_basename, | |
resume_download=True, | |
# force_download=True, | |
cache_dir=MODELS_PATH, | |
) | |
kwargs = { | |
"model_path": model_path, | |
"n_ctx": CONTEXT_WINDOW_SIZE, | |
"max_tokens": MAX_NEW_TOKENS, | |
"n_batch": N_BATCH, # set this based on your GPU & CPU RAM | |
} | |
if device_type.lower() == "mps": | |
kwargs["n_gpu_layers"] = 1 | |
if device_type.lower() == "cuda": | |
kwargs["n_gpu_layers"] = N_GPU_LAYERS # set this based on your GPU | |
return LlamaCpp(**kwargs) | |
except: | |
if "ggml" in model_basename: | |
logging.INFO("If you were using GGML model, LLAMA-CPP Dropped Support, Use GGUF Instead") | |
return None | |
def load_quantized_model_qptq(model_id, model_basename, device_type, logging): | |
logging.info("Using AutoGPTQForCausalLM for quantized models") | |
if ".safetensors" in model_basename: | |
# Remove the ".safetensors" ending if present | |
model_basename = model_basename.replace(".safetensors", "") | |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True) | |
logging.info("Tokenizer loaded") | |
model = AutoGPTQForCausalLM.from_quantized( | |
model_id, | |
model_basename=model_basename, | |
use_safetensors=True, | |
trust_remote_code=True, | |
device_map="auto", | |
use_triton=False, | |
quantize_config=None, | |
) | |
return model, tokenizer | |
def load_full_model(model_id, model_basename, device_type, logging): | |
if device_type.lower() in ["mps", "cpu"]: | |
logging.info("Using LlamaTokenizer") | |
tokenizer = LlamaTokenizer.from_pretrained(model_id, cache_dir=CACHE_DIR, use_auth_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) # | |
model = LlamaForCausalLM.from_pretrained(model_id, cache_dir=CACHE_DIR, use_auth_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) #, cache_dir=CACHE_DIR | |
else: | |
logging.info("Using AutoModelForCausalLM for full models") | |
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=CACHE_DIR, use_auth_token=os.environ["HUGGINGFACEHUB_API_TOKEN"]) #, cache_dir=CACHE_DIR | |
logging.info("Tokenizer loaded") | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
cache_dir=MODELS_PATH, | |
use_auth_token=os.environ["HUGGINGFACEHUB_API_TOKEN"] | |
# trust_remote_code=True, # set these if you are using NVIDIA GPU | |
# load_in_4bit=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_compute_dtype=torch.float16, | |
# max_memory={0: "15GB"} # Uncomment this line with you encounter CUDA out of memory errors | |
) | |
model.tie_weights() | |
return model, tokenizer | |
def load_model(device_type, model_id, model_basename=None, LOGGING=logger): | |
logger.info(f"Loading Model: {model_id}, on: {device_type}") | |
logger.info("This action can take a few minutes!") | |
if model_basename is not None: | |
if ".gguf" in model_basename.lower(): | |
llm = load_quantized_model_gguf_ggml( | |
model_id, model_basename, device_type, LOGGING) | |
return llm | |
elif ".ggml" in model_basename.lower(): | |
model, tokenizer = load_quantized_model_gguf_ggml( | |
model_id, model_basename, device_type, LOGGING) | |
else: | |
model, tokenizer = load_quantized_model_qptq( | |
model_id, model_basename, device_type, LOGGING) | |
else: | |
model, tokenizer = load_full_model( | |
model_id, model_basename, device_type, LOGGING) | |
# Load configuration from the model to avoid warnings | |
generation_config = GenerationConfig.from_pretrained(model_id) | |
pipe = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_length=MAX_NEW_TOKENS, | |
temperature=0.1, | |
# top_p=0.95, | |
repetition_penalty=1.15, | |
generation_config=generation_config, | |
) | |
local_llm = HuggingFacePipeline(pipeline=pipe) | |
logger.info("Local LLM Loaded") | |
return local_llm | |