Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# chatbot_app.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
import openai
|
5 |
+
import requests
|
6 |
+
from gtts import gTTS
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
+
import os
|
9 |
+
from io import BytesIO
|
10 |
+
from pydub import AudioSegment
|
11 |
+
from pydub.playback import play
|
12 |
+
import tempfile
|
13 |
+
|
14 |
+
# Configure API keys
|
15 |
+
HUGGING_FACE_API_KEY = "voicebot"
|
16 |
+
OPENAI_API_KEY = "your_openai_api_key"
|
17 |
+
openai.api_key = OPENAI_API_KEY
|
18 |
+
|
19 |
+
# Initialize the Hugging Face model and tokenizer
|
20 |
+
def load_model():
|
21 |
+
model_name = "facebook/musicgen-small"
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGING_FACE_API_KEY)
|
24 |
+
return model, tokenizer
|
25 |
+
|
26 |
+
model, tokenizer = load_model()
|
27 |
+
|
28 |
+
# Function to convert voice to text using OpenAI's Whisper API
|
29 |
+
def voice_to_text(audio_file):
|
30 |
+
with open(audio_file, "rb") as file:
|
31 |
+
transcript = openai.Audio.transcribe("whisper-1", file)
|
32 |
+
return transcript["text"]
|
33 |
+
|
34 |
+
# Function to generate chatbot response using Hugging Face's model
|
35 |
+
def generate_response(prompt):
|
36 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
37 |
+
outputs = model.generate(inputs, max_length=100, num_return_sequences=1)
|
38 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
39 |
+
return response
|
40 |
+
|
41 |
+
# Function to convert text to voice using gTTS
|
42 |
+
def text_to_speech(text):
|
43 |
+
tts = gTTS(text, lang="en")
|
44 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
45 |
+
tts.save(temp_file.name)
|
46 |
+
return temp_file.name
|
47 |
+
|
48 |
+
# Streamlit app layout
|
49 |
+
st.title("Voice-to-Text Chatbot")
|
50 |
+
st.write("Speak to the chatbot and get responses in both text and audio!")
|
51 |
+
|
52 |
+
# Upload audio file
|
53 |
+
audio_file = st.file_uploader("Upload your voice input", type=["mp3", "wav", "ogg"])
|
54 |
+
|
55 |
+
if audio_file is not None:
|
56 |
+
# Convert voice to text
|
57 |
+
with open("input_audio.wav", "wb") as f:
|
58 |
+
f.write(audio_file.read())
|
59 |
+
st.audio("input_audio.wav", format="audio/wav")
|
60 |
+
|
61 |
+
# Get text from audio
|
62 |
+
with st.spinner("Transcribing your voice..."):
|
63 |
+
user_input = voice_to_text("input_audio.wav")
|
64 |
+
st.write(f"**You said:** {user_input}")
|
65 |
+
|
66 |
+
# Generate chatbot response
|
67 |
+
with st.spinner("Generating response..."):
|
68 |
+
response_text = generate_response(user_input)
|
69 |
+
st.write(f"**Chatbot:** {response_text}")
|
70 |
+
|
71 |
+
# Convert response to audio
|
72 |
+
with st.spinner("Converting response to audio..."):
|
73 |
+
response_audio = text_to_speech(response_text)
|
74 |
+
audio_data = AudioSegment.from_mp3(response_audio)
|
75 |
+
|
76 |
+
# Display audio response
|
77 |
+
st.audio(response_audio, format="audio/mp3")
|
78 |
+
|
79 |
+
# Play audio
|
80 |
+
play(audio_data)
|
81 |
+
|
82 |
+
# Clean up temporary files
|
83 |
+
os.remove("input_audio.wav")
|
84 |
+
os.remove(response_audio)
|
85 |
+
else:
|
86 |
+
st.write("Please upload an audio file to get started.")
|
87 |
+
|